These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28578973)

  • 1. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.
    Li N; Chen W; Chen G; Tian J
    Carbohydr Polym; 2017 Sep; 171():77-84. PubMed ID: 28578973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength.
    Li N; Chen G; Chen W; Huang J; Tian J; Wan X; He M; Zhang H
    Carbohydr Polym; 2017 Dec; 178():159-165. PubMed ID: 29050581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities.
    Yue Y; Wang X; Han J; Yu L; Chen J; Wu Q; Jiang J
    Carbohydr Polym; 2019 Feb; 206():289-301. PubMed ID: 30553324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood.
    Cheng D; Wen Y; An X; Zhu X; Ni Y
    Carbohydr Polym; 2016 Oct; 151():326-334. PubMed ID: 27474574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength.
    Huang J; Zhao L; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2016 May; 8(19):12384-92. PubMed ID: 27116394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology.
    Liu Q; Liu J; Qin S; Pei Y; Zheng X; Tang K
    Int J Biol Macromol; 2020 Dec; 164():1776-1784. PubMed ID: 32791281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels.
    Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z
    Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors.
    Miao C; Li P; Yu J; Xu X; Zhang F; Tong G
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.
    Yuan N; Xu L; Zhang L; Ye H; Zhao J; Liu Z; Rong J
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():221-230. PubMed ID: 27287117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels.
    Lin F; Zheng R; Chen J; Su W; Dong B; Lin C; Huang B; Lu B
    Carbohydr Polym; 2019 Feb; 205():244-254. PubMed ID: 30446101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites.
    Lee M; Heo MH; Lee HH; Kim YW; Shin J
    Carbohydr Polym; 2017 Mar; 159():125-135. PubMed ID: 28038741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties.
    Niu J; Wang J; Dai X; Shao Z; Huang X
    Carbohydr Polym; 2018 Aug; 193():73-81. PubMed ID: 29773399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances.
    Ma Y; Lu Y; Yue Y; He S; Jiang S; Mei C; Xu X; Wu Q; Xiao H; Han J
    Carbohydr Polym; 2024 Jul; 335():122067. PubMed ID: 38616090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers.
    Zhou C; Wu Q
    Colloids Surf B Biointerfaces; 2011 May; 84(1):155-62. PubMed ID: 21273050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors.
    Cheng Y; Zang J; Zhao X; Wang H; Hu Y
    Carbohydr Polym; 2022 Feb; 277():118872. PubMed ID: 34893277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states.
    Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J
    J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.