These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28578973)
21. Injectable and moldable hydrogels for use in sensitive and wide range strain sensing applications. Qiao Z; Mieles M; Ji HF Biopolymers; 2020 Jun; 111(6):e23355. PubMed ID: 32353200 [TBL] [Abstract][Full Text] [Related]
22. The measurement of molecular interactions, structure and physical properties of okara cellulose composite hydrogels using different analytical methods. Wu C; McClements DJ; He M; Li Y; Teng F J Sci Food Agric; 2022 Aug; 102(10):4162-4170. PubMed ID: 35018651 [TBL] [Abstract][Full Text] [Related]
23. Genipin-crosslinked gelatin-based composite hydrogels reinforced with amino-functionalized microfibrillated cellulose. Rao Z; Dong Y; Liu J; Zheng X; Pei Y; Tang K Int J Biol Macromol; 2022 Dec; 222(Pt B):3155-3167. PubMed ID: 36243153 [TBL] [Abstract][Full Text] [Related]
24. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Park D; Kim JW; Shin K; Kim JW Carbohydr Polym; 2021 Nov; 272():118459. PubMed ID: 34420719 [TBL] [Abstract][Full Text] [Related]
25. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Lu Q; Zhang S; Xiong M; Lin F; Tang L; Huang B; Chen Y Carbohydr Polym; 2018 Sep; 196():225-232. PubMed ID: 29891291 [TBL] [Abstract][Full Text] [Related]
26. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Dash R; Foston M; Ragauskas AJ Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958 [TBL] [Abstract][Full Text] [Related]
27. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863 [TBL] [Abstract][Full Text] [Related]
28. Patterning of Structurally Anisotropic Composite Hydrogel Sheets. Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709 [TBL] [Abstract][Full Text] [Related]
29. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose. Jalaja K; James NR Int J Biol Macromol; 2015 Feb; 73():270-8. PubMed ID: 25478965 [TBL] [Abstract][Full Text] [Related]
30. Design and construction of high strength double network hydrogel with flow-induced orientation. Guo L; Ji C; Wang H; Ma T; Qi J J Colloid Interface Sci; 2024 Oct; 672():497-511. PubMed ID: 38852352 [TBL] [Abstract][Full Text] [Related]
31. Self-Sustaining Cellulose Nanofiber Hydrogel Produced by Hydrothermal Gelation without Additives. Suenaga S; Osada M ACS Biomater Sci Eng; 2018 May; 4(5):1536-1545. PubMed ID: 33445311 [TBL] [Abstract][Full Text] [Related]
32. Insect Cuticle-Mimetic Hydrogels with High Mechanical Properties Achieved via the Combination of Chitin Nanofiber and Gelatin. Chen C; Li D; Yano H; Abe K J Agric Food Chem; 2019 May; 67(19):5571-5578. PubMed ID: 31034225 [TBL] [Abstract][Full Text] [Related]
33. Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels. Dong Y; Zhao S; Lu W; Chen N; Zhu D; Li Y RSC Adv; 2021 Mar; 11(18):10794-10803. PubMed ID: 35423562 [TBL] [Abstract][Full Text] [Related]
34. High strength and self-healable gelatin/polyacrylamide double network hydrogels. Yan X; Chen Q; Zhu L; Chen H; Wei D; Chen F; Tang Z; Yang J; Zheng J J Mater Chem B; 2017 Oct; 5(37):7683-7691. PubMed ID: 32264369 [TBL] [Abstract][Full Text] [Related]
35. Dual Physically Cross-Linked Double Network Hydrogels with High Mechanical Strength, Fatigue Resistance, Notch-Insensitivity, and Self-Healing Properties. Yuan N; Xu L; Wang H; Fu Y; Zhang Z; Liu L; Wang C; Zhao J; Rong J ACS Appl Mater Interfaces; 2016 Dec; 8(49):34034-34044. PubMed ID: 27960423 [TBL] [Abstract][Full Text] [Related]
36. All-natural aerogel of nanoclay/cellulose nanofibers with hierarchical porous structure for rapid hemostasis. Long M; Yang X; Shi T; Yang Y Int J Biol Macromol; 2024 Oct; 278(Pt 3):134592. PubMed ID: 39122069 [TBL] [Abstract][Full Text] [Related]
37. One-Pot Method of Synthesizing TEMPO-Oxidized Bacterial Cellulose Nanofibers Using Immobilized TEMPO for Skincare Applications. Jun SH; Park SG; Kang NG Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31197111 [TBL] [Abstract][Full Text] [Related]
38. Modulation of composite hydrogel consisting of TEMPO-oxidized cellulose nanofibers and cationic guar gum. Li X; He P; Ma R; Dong C; Lv Y; Dai L Int J Biol Macromol; 2023 Jun; 241():124483. PubMed ID: 37086775 [TBL] [Abstract][Full Text] [Related]
39. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Park M; Lee D; Shin S; Hyun J Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635 [TBL] [Abstract][Full Text] [Related]
40. Bacterial cellulose reinforced double-network hydrogels for shape memory strand. Hua J; Liu C; Ng PF; Fei B Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]