BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28578976)

  • 1. Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.
    Rodsamran P; Sothornvit R
    Carbohydr Polym; 2017 Sep; 171():94-101. PubMed ID: 28578976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical, mechanical and water barrier properties of yuba films incorporated with various types of additives.
    Kim N; Seo E; Kim Y
    J Sci Food Agric; 2019 Apr; 99(6):2808-2817. PubMed ID: 30430583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium alginate/carboxymethyl cellulose films containing pyrogallic acid: physical and antibacterial properties.
    Han Y; Wang L
    J Sci Food Agric; 2017 Mar; 97(4):1295-1301. PubMed ID: 27328858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications.
    Li H; Shi H; He Y; Fei X; Peng L
    Int J Biol Macromol; 2020 Dec; 164():4104-4112. PubMed ID: 32898536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging.
    Jeevahan J; Chandrasekaran M
    Recent Pat Nanotechnol; 2019; 13(3):222-233. PubMed ID: 31553298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apple peel and carboxymethylcellulose-based nanocomposite films containing different nanoclays.
    Shin SH; Kim SJ; Lee SH; Park KM; Han J
    J Food Sci; 2014 Mar; 79(3):E342-53. PubMed ID: 24484358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics.
    Sousa GM; Soares Júnior MS; Yamashita F
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3153-9. PubMed ID: 23706195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film.
    Rodsamran P; Sothornvit R
    Food Chem; 2018 Mar; 242():239-246. PubMed ID: 29037685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trout skin gelatin-based edible film development.
    Kim D; Min SC
    J Food Sci; 2012 Sep; 77(9):E240-6. PubMed ID: 22908987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides.
    Ballesteros LF; Cerqueira MA; Teixeira JA; Mussatto SI
    Int J Biol Macromol; 2018 Jan; 106():647-655. PubMed ID: 28811206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability.
    Rompothi O; Pradipasena P; Tananuwong K; Somwangthanaroj A; Janjarasskul T
    Carbohydr Polym; 2017 Feb; 157():748-756. PubMed ID: 27987987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid.
    Ghanbarzadeh B; Almasi H
    Int J Biol Macromol; 2011 Jan; 48(1):44-9. PubMed ID: 20920525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and Application of Edible Modified Bacterial Cellulose Film Based Sago Liquid Waste as Food Packaging.
    Yanti NA; Ahmad SW; Ramadhan OAN; Jamili ; Muzuni ; Walhidayah T; Mamangkey J
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of various plasticizers and nanoclays on the mechanical properties of red algae film.
    Jang SA; Shin YJ; Seo YB; Song KB
    J Food Sci; 2011 Apr; 76(3):N30-4. PubMed ID: 21535849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil.
    Dashipour A; Razavilar V; Hosseini H; Shojaee-Aliabadi S; German JB; Ghanati K; Khakpour M; Khaksar R
    Int J Biol Macromol; 2015 Jan; 72():606-13. PubMed ID: 25220790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose.
    Qi XM; Liu SY; Chu FB; Pang S; Liang YR; Guan Y; Peng F; Sun RC
    Materials (Basel); 2015 Dec; 9(1):. PubMed ID: 28787804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical and thermomechanical characterization of tara gum edible films: effect of polyols as plasticizers.
    Antoniou J; Liu F; Majeed H; Qazi HJ; Zhong F
    Carbohydr Polym; 2014 Oct; 111():359-65. PubMed ID: 25037362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.
    Pan H; Jiang B; Chen J; Jin Z
    Carbohydr Polym; 2014 Nov; 112():94-101. PubMed ID: 25129721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxymethyl cellulose based films enriched with polysaccharides from mulberry leaves (Morus alba L.) as new biodegradable packaging material.
    Akhtar HMS; Ahmed S; Olewnik-Kruszkowska E; Gierszewska M; Brzezinska MS; Dembińska K; Kalwasińska A
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127633. PubMed ID: 37879581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.