These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 28579164)

  • 81. DESolve novolimus-eluting bioresorbable coronary scaffold failure assessed by frequency-domain optical coherence tomography imaging.
    Porto I; Vergallo R; Sangiorgi GM; Burzotta F; Garbo R; D'Amario D; Trani C; Rebuzzi AG; Crea F
    Coron Artery Dis; 2016 Jun; 27(4):334-6. PubMed ID: 26882020
    [No Abstract]   [Full Text] [Related]  

  • 82. Serial intravascular ultrasound evaluation of the DESolve™ novolimus-eluting bioresorbable coronary scaffold system.
    Barreira G; Costa JR; Costa R; Staico R; Chamie D; Slhessarenko JR; Tanajura LF; Abizaid A; Sousa A; Abizaid A
    Catheter Cardiovasc Interv; 2018 Nov; 92(6):E368-E374. PubMed ID: 29521477
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fracture with the newer bioresorbable vascular scaffolds.
    Elwany M; Di Palma G; Cortese B
    Catheter Cardiovasc Interv; 2017 Oct; 90(4):582-583. PubMed ID: 28295999
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Serial invasive imaging follow-up of the first clinical experience with the Magmaris magnesium bioresorbable scaffold.
    Tovar Forero MN; van Zandvoort L; Masdjedi K; Diletti R; Wilschut J; de Jaegere PP; Zijlstra F; Van Mieghem NM; Daemen J
    Catheter Cardiovasc Interv; 2020 Feb; 95(2):226-231. PubMed ID: 31033171
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Serial Baseline, 12-, 24-, and 60-Month Optical Coherence Tomography Evaluation of ST Segment Elevation Myocardial Infarction Patients Treated with Absorb Bioresorbable Vascular Scaffold.
    Koltowski L; Tomaniak M; Ochijewicz D; Zieliński K; Proniewska K; Malinowski KP; Zaleska M; Maksym J; Roleder T; Partyka L; Kochman W; Filipiak KJ; Opolski G; Kochman J
    Am J Cardiol; 2021 Sep; 155():23-31. PubMed ID: 34315572
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A comparative assessment by optical coherence tomography of the performance of the first and second generation of the everolimus-eluting bioresorbable vascular scaffolds.
    Gomez-Lara J; Brugaletta S; Diletti R; Garg S; Onuma Y; Gogas BD; van Geuns RJ; Dorange C; Veldhof S; Rapoza R; Whitbourn R; Windecker S; Garcia-Garcia HM; Regar E; Serruys PW
    Eur Heart J; 2011 Feb; 32(3):294-304. PubMed ID: 21123276
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A Polylactide Bioresorbable Scaffold Eluting Everolimus for Treatment of Coronary Stenosis: 5-Year Follow-Up.
    Serruys PW; Ormiston J; van Geuns RJ; de Bruyne B; Dudek D; Christiansen E; Chevalier B; Smits P; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Wasungu L; Ediebah D; Veldhof S; Onuma Y
    J Am Coll Cardiol; 2016 Feb; 67(7):766-76. PubMed ID: 26892411
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Preclinical investigation of neoatherosclerosis in magnesium-based bioresorbable scaffolds versus thick-strut drug-eluting stents.
    Nicol P; Bulin A; Castellanos MI; Stöger M; Obermeier S; Lewerich J; Lenz T; Hoppmann P; Baumgartner C; Fischer J; Steiger K; Haude M; Joner M
    EuroIntervention; 2020 Dec; 16(11):e922-e929. PubMed ID: 32583804
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optical coherence tomography analysis of strut coverage in biolimus- and sirolimus-eluting stents: 3-month and 12-month serial follow-up.
    Kim BK; Hong MK; Shin DH; Kim JS; Ko YG; Choi D; Jang Y
    Int J Cardiol; 2013 Oct; 168(5):4617-23. PubMed ID: 23932862
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A fresh look at bioresorbable scaffold technology: Intuition pumps.
    Mishra S
    Indian Heart J; 2017; 69(1):107-111. PubMed ID: 28228292
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Two-year longitudinal evaluation of a second-generation thin-strut sirolimus-eluting bioresorbable coronary scaffold with hybrid cell design in porcine coronary arteries.
    Gasior P; Cheng Y; Xia J; Conditt GB; McGregor JC; Virmani R; Granada JF; Kaluza GL
    Cardiol J; 2020; 27(2):115-125. PubMed ID: 30155861
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Coronary Artery Aneurysm After Bioresorbable Scaffold Implantation in a Woman With an Acute Coronary Syndrome.
    Cereda AF; Canova PA; Oreglia JA; Soriano FS
    J Invasive Cardiol; 2017 Jul; 29(7):E77-E78. PubMed ID: 28667808
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Preclinical evaluation of a thin-strut bioresorbable scaffold (ArterioSorb): acute-phase invasive imaging assessment and hemodynamic implication.
    Katagiri Y; Torii R; Takahashi K; Tenekecioglu E; Asano T; Chichareon P; Tomaniak M; Piek JJ; Wykrzykowska JJ; Bullett N; Ahmed N; Al-Lamee K; Al-Lamee R; Leclerc G; Kitslaar P; Dijkstra J; Reiber JHC; Poon EKW; Bourantas CV; Gijsen FJH; Serruys PW; Onuma Y
    EuroIntervention; 2020 Jun; 16(2):e141-e146. PubMed ID: 31289016
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Optical Coherence Tomography Guided Percutaneous Coronary Intervention With Nobori Stent Implantation in Patients With Non-ST-Segment-Elevation Myocardial Infarction (OCTACS) Trial: Difference in Strut Coverage and Dynamic Malapposition Patterns at 6 Months.
    Antonsen L; Thayssen P; Maehara A; Hansen HS; Junker A; Veien KT; Hansen KN; Hougaard M; Mintz GS; Jensen LO
    Circ Cardiovasc Interv; 2015 Aug; 8(8):e002446. PubMed ID: 26253735
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds.
    Tenekecioglu E; Torii R; Katagiri Y; Chichareon P; Asano T; Miyazaki Y; Takahashi K; Modolo R; Al-Lamee R; Al-Lamee K; Colet C; Reiber JHC; Pekkan K; van Geuns R; Bourantas CV; Onuma Y; Serruys PW
    Int J Cardiovasc Imaging; 2019 Mar; 35(3):409-418. PubMed ID: 30426299
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Scaffold thrombosis following implantation of the ABSORB BVS in routine clinical practice: Insight into possible mechanisms from optical coherence tomography.
    Kraak RP; Kajita AH; Garcia-Garcia HM; Henriques JPS; Piek JJ; Arkenbout EK; van der Schaaf RJ; Tijssen JGP; de Winter RJ; Wykrzykowska JJ
    Catheter Cardiovasc Interv; 2018 Aug; 92(2):E106-E114. PubMed ID: 29332307
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effect of strut distribution on neointimal coverage of everolimus-eluting bioresorbable scaffolds: an optical coherence tomography study.
    Sato T; Jose J; Allai A; El-Mawardy M; Tölg R; Richardt G; Abdel-Wahab M
    J Thromb Thrombolysis; 2017 Aug; 44(2):161-168. PubMed ID: 28597206
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Difference in vascular response between sirolimus-eluting- and everolimus-eluting stents in ostial left circumflex artery after unprotected left main as observed by optical coherence tomography.
    Fujino Y; Attizzani GF; Tahara S; Naganuma T; Takagi K; Yabushita H; Wang W; Tanaka K; Matsumoto T; Kawamoto H; Yamada Y; Amano S; Watanabe Y; Warisawa T; Sato T; Mitomo S; Kurita N; Ishiguro H; Hozawa K; Tsukahara T; Motosuke M; Bezerra HG; Nakamura S; Nakamura S
    Int J Cardiol; 2017 Mar; 230():284-292. PubMed ID: 28065691
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Computed tomography angiography for guiding and follow-up of magnesium-bioresorbable scaffold implantation.
    Opolski MP; Kepka C; Wojakowski W; Witkowski A
    Clin Res Cardiol; 2019 Mar; 108(3):344-346. PubMed ID: 30182164
    [No Abstract]   [Full Text] [Related]  

  • 100. Comparison of Side-Branch Dilation Techniques After Resorbable Magnesium Scaffold Implantation: A Bench Study.
    de Pommereau A; Mogi S; de Hemptinne Q; Adjedj J; Varenne O; Picard F
    J Invasive Cardiol; 2019 Aug; 31(8):E249-E255. PubMed ID: 31368896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.