BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28579515)

  • 1. ChromBiSim: Interactive chromatin biclustering using a simple approach.
    Noureen N; Zohaib HM; Qadir MA; Fazal S
    Genomics; 2017 Oct; 109(5-6):353-361. PubMed ID: 28579515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChromClust: A semi-supervised chromatin clustering toolkit for mining histone modifications interplay.
    Noureen N; Touseef M; Fazal S; Qadir MA
    Genomics; 2015 Dec; 106(6):355-9. PubMed ID: 26551295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding combinatorial histone code by semi-supervised biclustering.
    Teng L; Tan K
    BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methods to explore chromatin state dynamics.
    Orouji E; Raman AT
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive analysis of single-cell epigenomic landscapes with ChromSCape.
    Prompsy P; Kirchmeier P; Marsolier J; Deloger M; Servant N; Vallot C
    Nat Commun; 2020 Nov; 11(1):5702. PubMed ID: 33177523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome.
    Mammana A; Chung HR
    Genome Biol; 2015 Jul; 16(1):151. PubMed ID: 26206277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles.
    Chen L; Jin P; Qin ZS
    Genome Biol; 2016 Dec; 17(1):252. PubMed ID: 27923386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps.
    Mortazavi A; Pepke S; Jansen C; Marinov GK; Ernst J; Kellis M; Hardison RC; Myers RM; Wold BJ
    Genome Res; 2013 Dec; 23(12):2136-48. PubMed ID: 24170599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology.
    Cieślik M; Bekiranov S
    BMC Genomics; 2014 Jan; 15():76. PubMed ID: 24472558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering.
    Ucar D; Hu Q; Tan K
    Nucleic Acids Res; 2011 May; 39(10):4063-75. PubMed ID: 21266477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of recurrent combinatorial patterns of chromatin modifications at promoters across various tissue types.
    Meng N; Machiraju R; Huang K
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):534. PubMed ID: 28155643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EpiAlign: an alignment-based bioinformatic tool for comparing chromatin state sequences.
    Ge X; Zhang H; Xie L; Li WV; Kwon SB; Li JJ
    Nucleic Acids Res; 2019 Jul; 47(13):e77. PubMed ID: 31045217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum.
    Veluchamy A; Rastogi A; Lin X; Lombard B; Murik O; Thomas Y; Dingli F; Rivarola M; Ott S; Liu X; Sun Y; Rabinowicz PD; McCarthy J; Allen AE; Loew D; Bowler C; Tirichine L
    Genome Biol; 2015 May; 16(1):102. PubMed ID: 25990474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
    Li WV; Razaee ZS; Li JJ
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering combinatorial interactions in chromatin.
    Wood IC
    Epigenomics; 2011 Jun; 3(3):371-9. PubMed ID: 22122343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing-associated chromatin signatures: a combinatorial and position-dependent role for histone marks in splicing definition.
    Agirre E; Oldfield AJ; Bellora N; Segelle A; Luco RF
    Nat Commun; 2021 Jan; 12(1):682. PubMed ID: 33514745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
    Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J
    PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.