These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28579632)

  • 1. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels.
    Dragas J; Viswam V; Shadmani A; Chen Y; Bounik R; Stettler A; Radivojevic M; Geissler S; Obien M; Müller J; Hierlemann A
    IEEE J Solid-State Circuits; 2017 Jun; 52(6):1576-1590. PubMed ID: 28579632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro.
    Ballini M; Müller J; Livi P; Chen Y; Frey U; Stettler A; Shadmani A; Viswam V; Jones IL; Jäckel D; Radivojevic M; Lewandowska MK; Gong W; Fiscella M; Bakkum DJ; Heer F; Hierlemann A
    IEEE J Solid-State Circuits; 2014 Nov; 49(11):2705-2719. PubMed ID: 28502989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Density Mapping of Brain Slices using a Large Multi-Functional High-Density CMOS Microelectrode Array System.
    Viswam V; Bounik R; Shadmani A; Dragas J; Obien M; Müller J; Chen Y; Hierlemann A
    Int Solid State Sens Actuators Microsyst Conf; 2017 Jun; 2017():135-138. PubMed ID: 28868212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells.
    Shaik FA; Ihida S; Ikeuchi Y; Tixier-Mita A; Toshiyoshi H
    Biosens Bioelectron; 2020 Dec; 169():112546. PubMed ID: 32911315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 22.8 Multi-Functional Microelectrode Array System Featuring 59,760 Electrodes, 2048 Electrophysiology Channels, Impedance and Neurotransmitter Measurement Units.
    Viswam V; Dragas J; Shadmani A; Chen Y; Stettler A; Müller J; Hierlemann A
    Dig Tech Pap IEEE Int Solid State Circuits Conf; 2016 Feb; 2016():394-396. PubMed ID: 34916732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-mode Microelectrode Array Featuring 20k Electrodes and High SNR for Extracellular Recording of Neural Networks.
    Yuan X; Emmenegger V; Obien MEJ; Hierlemann A; Frey U
    IEEE Biomed Circuits Syst Conf; 2019 Jun; 2018():. PubMed ID: 31294423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19584 Electrodes and High SNR.
    Yuan X; Hierlemann A; Frey U
    IEEE J Solid-State Circuits; 2021 Aug; 56(8):2466-2475. PubMed ID: 34326555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip.
    Miccoli B; Lopez CM; Goikoetxea E; Putzeys J; Sekeri M; Krylychkina O; Chang SW; Firrincieli A; Andrei A; Reumers V; Braeken D
    Front Neurosci; 2019; 13():641. PubMed ID: 31293372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CMOS Microelectrode Array System With Reconfigurable Sub-Array Multiplexing Architecture Integrating 24,320 Electrodes and 380 Readout Channels.
    Cha JH; Park JH; Park Y; Shin H; Hwang KS; Cho IJ; Kim SJ
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1044-1056. PubMed ID: 36191109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.
    Vijay V; Raziyeh B; Amir S; Jelena D; Alicia BJ; Axel B; Jan M; Yihui C; Andreas H
    Proc IEEE Sens; 2017 Jan; 2016():1-3. PubMed ID: 29780437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System.
    Viswam V; Bounik R; Shadmani A; Dragas J; Urwyler C; Boos JA; Obien MEJ; Muller J; Chen Y; Hierlemann A
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1356-1368. PubMed ID: 30418922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-channel-count, high-density microelectrode array for closed-loop investigation of neuronal networks.
    Tsai D; John E; Chari T; Yuste R; Shepard K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7510-3. PubMed ID: 26738029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies.
    Viswam V; Obien MEJ; Franke F; Frey U; Hierlemann A
    Front Neurosci; 2019; 13():385. PubMed ID: 31105515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons.
    Abbott J; Ye T; Krenek K; Qin L; Kim Y; Wu W; Gertner RS; Park H; Ham D
    IEEE J Solid-State Circuits; 2020 Sep; 55(9):2567-2582. PubMed ID: 33762776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multimodal and Multifunctional CMOS Cellular Interfacing Array for Digital Physiology and Pathology Featuring an Ultra Dense Pixel Array and Reconfigurable Sampling Rate.
    Wang AY; Sheng Y; Li W; Jung D; Junek GV; Liu H; Park J; Lee D; Wang M; Maharjan S; Kumashi S; Hao J; Zhang YS; Eggan K; Wang H
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1057-1074. PubMed ID: 36417722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenon LFP Analysis Platform Is a Novel Graphical User Interface for Analysis of Local Field Potential From Large-Scale MEA Recordings.
    Mahadevan A; Codadu NK; Parrish RR
    Front Neurosci; 2022; 16():904931. PubMed ID: 35844228
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.