These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array. Jones IL; Russell TL; Farrow K; Fiscella M; Franke F; Müller J; Jäckel D; Hierlemann A Front Neurosci; 2015; 9():360. PubMed ID: 26528115 [TBL] [Abstract][Full Text] [Related]
43. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740 [TBL] [Abstract][Full Text] [Related]
44. Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array. Abbott J; Mukherjee A; Wu W; Ye T; Jung HS; Cheung KM; Gertner RS; Basan M; Ham D; Park H Lab Chip; 2022 Mar; 22(7):1286-1296. PubMed ID: 35266462 [TBL] [Abstract][Full Text] [Related]
45. An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging. Tedjo W; Chen T IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):20-35. PubMed ID: 31751250 [TBL] [Abstract][Full Text] [Related]
46. High-performance Flexible Microelectrode Array with PEDOT:PSS Coated 3D Micro-cones for Electromyographic Recording. Lu J; Zia M; Williams MJ; Jacob AL; Chung B; Sober SJ; Bakir MS Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():5111-5114. PubMed ID: 36086620 [TBL] [Abstract][Full Text] [Related]
47. A 122 fps, 1 MHz Bandwidth Multi-Frequency Wearable EIT Belt Featuring Novel Active Electrode Architecture for Neonatal Thorax Vital Sign Monitoring. Wu Y; Jiang D; Bardill A; Bayford R; Demosthenous A IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):927-937. PubMed ID: 31283510 [TBL] [Abstract][Full Text] [Related]
48. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]
49. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays. Gunalan K; Warren DJ; Perry JD; Normann RA; Clark GA J Neurosci Methods; 2009 Apr; 178(2):263-9. PubMed ID: 19150630 [TBL] [Abstract][Full Text] [Related]
50. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording. Kim JM; Im C; Lee WR Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988 [TBL] [Abstract][Full Text] [Related]
51. Design and Fabrication of a Three-Dimensional Multi-Electrode Array for Neuron Electrophysiology. Zuo L; Yu S; Briggs CA; Kantor S; Pan JY J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28975276 [TBL] [Abstract][Full Text] [Related]
53. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks. Obien MEJ; Frey U Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933 [TBL] [Abstract][Full Text] [Related]
54. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
55. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827 [TBL] [Abstract][Full Text] [Related]
56. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013 [TBL] [Abstract][Full Text] [Related]
57. A 4.8-μV Ogi J; Kato Y; Nakashima Y; Ikeda K; Jingu M; Matoba Y; Kimizuka N; Yamane C; Maehara M; Kishimoto T; Hashimoto S; Matsui E; Oike Y Front Neurosci; 2019; 13():234. PubMed ID: 30949022 [TBL] [Abstract][Full Text] [Related]
58. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode. Kuperstein M; Eichenbaum H Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353 [TBL] [Abstract][Full Text] [Related]
59. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases. Guo J; Ng W; Yuan J; Li S; Chan M IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):567-78. PubMed ID: 26529782 [TBL] [Abstract][Full Text] [Related]
60. A high aspect ratio microelectrode array for mapping neural activity in vitro. Kibler AB; Jamieson BG; Durand DM J Neurosci Methods; 2012 Mar; 204(2):296-305. PubMed ID: 22179041 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]