These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28579666)

  • 1. Optical design and Initial Results from The National Institute of Standards and Technology's AMMT/TEMPS Facility.
    Grantham S; Lane B; Neira J; Mekhontsev S; Vlasea M; Hanssen L
    Proc SPIE Int Soc Opt Eng; 2016; 9738():. PubMed ID: 28579666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): "Three-Dimensional Scan Strategies".
    Lane B; Yeung H
    J Res Natl Inst Stand Technol; 2019; 124():1-14. PubMed ID: 34877171
    [No Abstract]   [Full Text] [Related]  

  • 4. Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): Overhang Part X4.
    Lane B; Yeung H
    J Res Natl Inst Stand Technol; 2020; 125():125027. PubMed ID: 39015411
    [No Abstract]   [Full Text] [Related]  

  • 5. Data-driven characterization of thermal models for powder-bed-fusion additive manufacturing.
    Yan W; Lu Y; Jones K; Yang Z; Fox J; Witherell P; Wagner G; Liu WK
    Addit Manuf; 2020; 36():. PubMed ID: 34123733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion.
    Fisher BA; Lane B; Yeung H; Beuth J
    Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates.
    Ricker RE; Heigel JC; Lane BM; Zhirnov I; Levine LE
    Integr Mater Manuf Innov; 2019; 8(4):. PubMed ID: 33029475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.
    Lane B; Moylan S; Whitenton E; Ma L
    Rapid Prototyp J; 2016; 22(5):778-787. PubMed ID: 28058036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Computed Tomography Data of Additive Manufacturing Metrology Testbed (AMMT) Parts: "Overhang Part X4".
    Praniewicz M; Lane B; Kim F; Saldana C
    J Res Natl Inst Stand Technol; 2020; 125():125031. PubMed ID: 39015413
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene terephthalate) Powder-A Versatile Material for Additive Manufacturing.
    Gu H; AlFayez F; Ahmed T; Bashir Z
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion.
    Mukherjee S; Benavidez E; Crumb M; Calta NP
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular testbed for mechanized spreading of powder layers for additive manufacturing.
    Oropeza D; Roberts R; Hart AJ
    Rev Sci Instrum; 2021 Jan; 92(1):015114. PubMed ID: 33514203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Powder Deposition on Powder Bed and Specimen Properties.
    Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inline Quality Control through Optical Deep Learning-Based Porosity Determination for Powder Bed Fusion of Polymers.
    Schlicht S; Jaksch A; Drummer D
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Empirical Approach for the Development of Process Parameters for Laser Powder Bed Fusion.
    Pfaff A; Jäcklein M; Schlager M; Harwick W; Hoschke K; Balle F
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg.
    Muñiz-Lerma JA; Nommeots-Nomm A; Waters KE; Brochu M
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of Microscopic Thermal Fields from Oversampled Infrared Images in Laser-Based Powder Bed Fusion.
    Stanger L; Rockett T; Lyle A; Davies M; Anderson M; Todd I; Basoalto H; Willmott JR
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.