BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28579697)

  • 1. Hydrodynamically-driven drug release during interstitial flow through hollow fibers implanted near lymphatics.
    Dukhin SS; Labib ME
    Colloids Surf A Physicochem Eng Asp; 2017 May; 521():177-192. PubMed ID: 28579697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.
    Dukhin SS; Labib ME
    Adv Colloid Interface Sci; 2013 Nov; 199-200():23-43. PubMed ID: 23859221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of effective drug release from medical implants based on the Higuchi model and physico-chemical hydrodynamics.
    Dukhin SS; Labib ME
    Colloids Surf A Physicochem Eng Asp; 2012 Sep; 409():10-20. PubMed ID: 24155569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds.
    Wang Z; Liu C; Chen B; Luo Y
    Int J Biol Macromol; 2021 Jan; 168():38-45. PubMed ID: 33301844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of the effect of convective flow on solute transport and insulin release in a hollow fiber bioartificial pancreas.
    Pillarella MR; Zydney AL
    J Biomech Eng; 1990 May; 112(2):220-8. PubMed ID: 2189042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of functioning lymphatics and accumulation of tissue fluid/lymph in interstitial "lakes" in colon cancer tissue.
    Stanczyk M; Olszewski WL; Gewartowska M; Domaszewska-Szostek A
    Lymphology; 2010 Dec; 43(4):158-67. PubMed ID: 21446571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microlymphatics and lymph flow.
    Schmid-Schönbein GW
    Physiol Rev; 1990 Oct; 70(4):987-1028. PubMed ID: 2217560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of flow configuration and membrane characteristics on membrane fouling in a novel multicoaxial hollow-fiber bioartificial liver.
    MacDonald JM; Wolfe SP; Roy-Chowdhury I; Kubota H; Reid LM
    Ann N Y Acad Sci; 2001 Nov; 944():334-43. PubMed ID: 11797682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of neovascularization around hollow fiber bioartificial organs using biologically active substances.
    Hunter SK; Kao JM; Wang Y; Benda JA; Rodgers VG
    ASAIO J; 1999; 45(1):37-40. PubMed ID: 9952004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphatic system of the pancreas.
    O'Morchoe CC
    Microsc Res Tech; 1997 Jun 1-15; 37(5-6):456-77. PubMed ID: 9220424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ageing and maintenance of the interstitial fluid traffic: possible roles of initial lymphatics and circadian hormones.
    Kurbel S
    Med Hypotheses; 2005; 64(2):375-9. PubMed ID: 15607572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic Assessment of Hollow-Fiber Membrane Oxygenators Using Computational Fluid Dynamics in Heterogeneous Membrane Models.
    Dipresa D; Kalozoumis P; Pflaum M; Peredo A; Wiegmann B; Haverich A; Korossis S
    J Biomech Eng; 2021 May; 143(5):. PubMed ID: 33462588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.
    Hogg SR; Muthu S; O'Callaghan M; Lahitte JF; Bruening ML
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1440-8. PubMed ID: 22276733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices.
    Pacella HE; Eash HJ; Federspiel WJ
    J Memb Sci; 2011 Oct; 382(1-2):238-242. PubMed ID: 22927706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen consumption in a hollow fiber bioartificial liver--revisited.
    Patzer JF
    Artif Organs; 2004 Jan; 28(1):83-98. PubMed ID: 14720293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow distributions in hollow fiber hemodialyzers using magnetic resonance Fourier velocity imaging.
    Zhang J; Parker DL; Leypoldt JK
    ASAIO J; 1995; 41(3):M678-82. PubMed ID: 8573891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.