These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 28580103)
1. Controlling superstructural ordering in the clathrate-I Ba Dolyniuk J; Whitfield PS; Lee K; Lebedev OI; Kovnir K Chem Sci; 2017 May; 8(5):3650-3659. PubMed ID: 28580103 [TBL] [Abstract][Full Text] [Related]
2. Unconventional Clathrates with Transition Metal-Phosphorus Frameworks. Wang J; Dolyniuk JA; Kovnir K Acc Chem Res; 2018 Jan; 51(1):31-39. PubMed ID: 29256588 [TBL] [Abstract][Full Text] [Related]
3. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba Dolyniuk JA; Zaikina JV; Kaseman DC; Sen S; Kovnir K Angew Chem Int Ed Engl; 2017 Feb; 56(9):2418-2422. PubMed ID: 28097775 [TBL] [Abstract][Full Text] [Related]
4. Clathrate Ba8Au16P30: the "gold standard" for lattice thermal conductivity. Fulmer J; Lebedev OI; Roddatis VV; Kaseman DC; Sen S; Dolyniuk JA; Lee K; Olenev AV; Kovnir K J Am Chem Soc; 2013 Aug; 135(33):12313-23. PubMed ID: 23862668 [TBL] [Abstract][Full Text] [Related]
5. Sn19.3Cu4.7As22I8: a new clathrate-I compound with transition-metal atoms in the cationic framework. Kovnir KA; Sobolev AV; Presniakov IA; Lebedev OI; Van Tendeloo G; Schnelle W; Grin Y; Shevelkov AV Inorg Chem; 2005 Nov; 44(24):8786-93. PubMed ID: 16296833 [TBL] [Abstract][Full Text] [Related]
6. High-efficiency thermoelectric Ba Wang J; Lebedev OI; Lee K; Dolyniuk JA; Klavins P; Bux S; Kovnir K Chem Sci; 2017 Dec; 8(12):8030-8038. PubMed ID: 29568451 [TBL] [Abstract][Full Text] [Related]
7. Lithium metal atoms fill vacancies in the germanium network of a type-I clathrate: synthesis and structural characterization of Ba Ghosh K; Ovchinnikov A; Baitinger M; Krnel M; Burkhardt U; Grin Y; Bobev S Dalton Trans; 2023 Aug; 52(30):10310-10322. PubMed ID: 37221973 [TBL] [Abstract][Full Text] [Related]
8. Sn(20.5) square(3.5)As(22)I(8): a largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity. Zaikina JV; Kovnir KA; Sobolev AV; Presniakov IA; Prots Y; Baitinger M; Schnelle W; Olenev AV; Lebedev OI; Van Tendeloo G; Grin Y; Shevelkov AV Chemistry; 2007; 13(18):5090-9. PubMed ID: 17385200 [TBL] [Abstract][Full Text] [Related]
9. High Pressure Properties of a Ba-Cu-Zn-P Clathrate-I. Dolyniuk JA; Kovnir K Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773814 [TBL] [Abstract][Full Text] [Related]
10. Influence of Sn-substitution on the thermoelectric properties of the clathrate type-I, Ba8Zn(x)Ge(46-x-y)Sn(y). Falmbigl M; Grytsiv A; Rogl P; Yan X; Royanian E; Bauer E Dalton Trans; 2013 Feb; 42(8):2913-20. PubMed ID: 23243666 [TBL] [Abstract][Full Text] [Related]
11. Cationic clathrate I Si(46-x)P(x)Te(y) (6.6(1) < or = y < or = 7.5(1), x < or = 2y): crystal structure, homogeneity range, and physical properties. Zaikina JV; Kovnir KA; Burkhardt U; Schnelle W; Haarmann F; Schwarz U; Grin Y; Shevelkov AV Inorg Chem; 2009 Apr; 48(8):3720-30. PubMed ID: 19281208 [TBL] [Abstract][Full Text] [Related]
12. Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs Owens-Baird B; Yox P; Lee S; Carroll XB; Grass Wang S; Chen YS; Lebedev OI; Kovnir K Chem Sci; 2020 Sep; 11(37):10255-10264. PubMed ID: 34094291 [TBL] [Abstract][Full Text] [Related]
13. Introducing a magnetic guest to a tetrel-free clathrate: synthesis, structure, and properties of Eu(x)Ba(8-x)Cu16P30 (0 ≤ x ≤ 1.5). Kovnir K; Stockert U; Budnyk S; Prots Y; Baitinger M; Paschen S; Shevelkov AV; Grin Y Inorg Chem; 2011 Oct; 50(20):10387-96. PubMed ID: 21905757 [TBL] [Abstract][Full Text] [Related]
14. Ordering of vacancies in type-I tin clathrate: superstructure of Rb8Sn44 square2. Dubois F; Fässler TF J Am Chem Soc; 2005 Mar; 127(10):3264-5. PubMed ID: 15755128 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, Structure, and Electrical Properties of the Single Crystal Ba Wei K; Khabibullin AR; Hobbis D; Wong-Ng W; Chang T; Wang SG; Levin I; Chen YS; Woods LM; Nolas GS Inorg Chem; 2018 Aug; 57(15):9327-9334. PubMed ID: 29995394 [TBL] [Abstract][Full Text] [Related]
16. Clathrate XI K Cox T; Gvozdetskyi V; Bertolami M; Lee S; Shipley K; Lebedev OI; Zaikina JV Angew Chem Int Ed Engl; 2021 Jan; 60(1):415-423. PubMed ID: 32936983 [TBL] [Abstract][Full Text] [Related]
17. Structural and Thermoelectric Properties of Cu Substituted Type I Clathrates Ba₈Cu Dong Y; Ding X; Yan X; Zhang L; Ju T; Liu C; Rogl P; Paschen S Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30641991 [TBL] [Abstract][Full Text] [Related]
18. Abnormal structural transformation of tetra- Lim J; Lee J; Seo Y Phys Chem Chem Phys; 2022 Dec; 24(48):29451-29460. PubMed ID: 36459086 [TBL] [Abstract][Full Text] [Related]
19. New Trick for an Old Dog: From Prediction to Properties of "Hidden Clathrates" Ba Yox P; Cerasoli F; Sarkar A; Kyveryga V; Viswanathan G; Donadio D; Kovnir K J Am Chem Soc; 2023 Mar; 145(8):4638-4646. PubMed ID: 36787623 [TBL] [Abstract][Full Text] [Related]
20. The first silicon-based cationic clathrate III with high thermal stability: Si172-xPxTey (x=2y, y>20). Zaikina JV; Kovnir KA; Haarmann F; Schnelle W; Burkhardt U; Borrmann H; Schwarz U; Grin Y; Shevelkov AV Chemistry; 2008; 14(18):5414-22. PubMed ID: 18504725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]