These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28580617)

  • 1. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.
    Boulange J; Malhat F; Thuyet DQ; Watanabe H
    Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields.
    Boulange J; Thuyet DQ; Jaikaew P; Watanabe H
    Pest Manag Sci; 2016 Jun; 72(6):1178-86. PubMed ID: 26271744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model.
    Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K
    J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model.
    Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E
    J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence and metabolism of Fipronil in rice (Oryza sativa Linnaeus) field.
    Kumar R; Singh B
    Bull Environ Contam Toxicol; 2013 Apr; 90(4):482-8. PubMed ID: 23238826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the fate of pesticides in paddy rice-fish pond farming systems in northern Vietnam.
    La N; Lamers M; Nguyen VV; Streck T
    Pest Manag Sci; 2014 Jan; 70(1):70-9. PubMed ID: 23483671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems.
    Ferrari F; Karpouzas DG; Trevisan M; Capri E
    Environ Sci Technol; 2005 May; 39(9):2968-75. PubMed ID: 15926540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse analysis to estimate site-specific parameters of a mathematical model for simulating pesticide dissipations in paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2019 Jun; 75(6):1594-1605. PubMed ID: 30471196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems.
    Tsochatzis ED; Tzimou-Tsitouridou R; Menkissoglu-Spiroudi U; Karpouzas DG; Katsantonis D
    Chemosphere; 2013 May; 91(7):1049-57. PubMed ID: 23507498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor.
    Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H
    Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem.
    Zhang C; Hu X; Zhao H; Wu M; He H; Zhang C; Tang T; Ping L; Li Z
    Chemosphere; 2013 Sep; 93(1):190-5. PubMed ID: 23800585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions.
    Wang K; Wu JX; Zhang HY
    Ecotoxicol Environ Saf; 2012 Dec; 86():111-5. PubMed ID: 23062559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of pesticides in combined paddy rice-fish pond farming systems in northern Vietnam.
    Anyusheva M; Lamers M; La N; Nguyen VV; Streck T
    J Environ Qual; 2012; 41(2):515-25. PubMed ID: 22370414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.