BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28580784)

  • 1. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids.
    Domingues EM; Arunachalam S; Nauruzbayeva J; Mishra H
    Nat Commun; 2018 Sep; 9(1):3606. PubMed ID: 30190456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of cavity filling by liquids.
    Seo D; Schrader AM; Chen SY; Kaufman Y; Cristiani TR; Page SH; Koenig PH; Gizaw Y; Lee DW; Israelachvili JN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8070-8075. PubMed ID: 30026197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Condensation-Resistant Omniphobic Surfaces.
    Wilke KL; Preston DJ; Lu Z; Wang EN
    ACS Nano; 2018 Nov; 12(11):11013-11021. PubMed ID: 30299928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Coating-free Superomniphobicity.
    Das R; Ahmad Z; Nauruzbayeva J; Mishra H
    Sci Rep; 2020 May; 10(1):7934. PubMed ID: 32404874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning traditionally nonwetting surfaces wetting for even ultra-high surface energy liquids.
    Wilke KL; Lu Z; Song Y; Wang EN
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures.
    Panter JR; Kusumaatmaja H
    J Phys Condens Matter; 2017 Mar; 29(8):084001. PubMed ID: 28092626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces.
    Kanungo M; Mettu S; Law KY; Daniel S
    Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids.
    Liu TL; Kim CJ
    Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proof-of-Concept for Gas-Entrapping Membranes Derived from Water-Loving SiO2/Si/SiO2 Wafers for Green Desalination.
    Das R; Arunachalam S; Ahmad Z; Manalastas E; Syed A; Buttner U; Mishra H
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of transitions between wetting states on microcavity arrays by optical transmission microscopy.
    Søgaard E; Andersen NK; Smistrup K; Larsen ST; Sun L; Taboryski R
    Langmuir; 2014 Nov; 30(43):12960-8. PubMed ID: 25289462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures.
    Seo D; Cha SK; Kim G; Shin H; Hong S; Cho YH; Chun H; Choi Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5877-5884. PubMed ID: 30648844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation.
    Boo C; Lee J; Elimelech M
    Environ Sci Technol; 2016 Nov; 50(22):12275-12282. PubMed ID: 27762141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars.
    Choi J; Jo W; Lee SY; Jung YS; Kim SH; Kim HT
    ACS Nano; 2017 Aug; 11(8):7821-7828. PubMed ID: 28715178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    Sci Rep; 2015 Nov; 5():17110. PubMed ID: 26603940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiwetting and Antifouling Janus Membrane for Desalination of Saline Oily Wastewater by Membrane Distillation.
    Li C; Li X; Du X; Tong T; Cath TY; Lee J
    ACS Appl Mater Interfaces; 2019 May; 11(20):18456-18465. PubMed ID: 31059227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.