These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28580961)

  • 1. Universal fragment descriptors for predicting properties of inorganic crystals.
    Isayev O; Oses C; Toher C; Gossett E; Curtarolo S; Tropsha A
    Nat Commun; 2017 Jun; 8():15679. PubMed ID: 28580961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors.
    Tawfik SA; Russo SP
    J Cheminform; 2022 Nov; 14(1):78. PubMed ID: 36348412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning descriptors in materials chemistry used in multiple experimentally validated studies: Oliynyk elemental property dataset.
    Lee S; Chen C; Garcia G; Oliynyk A
    Data Brief; 2024 Apr; 53():110178. PubMed ID: 38384308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.
    Jain D; Chaube S; Khullar P; Goverapet Srinivasan S; Rai B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19423-19436. PubMed ID: 31460545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals.
    Hicks D; Oses C; Gossett E; Gomez G; Taylor RH; Toher C; Mehl MJ; Levy O; Curtarolo S
    Acta Crystallogr A Found Adv; 2018 May; 74(Pt 3):184-203. PubMed ID: 29724965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Forest Model with Combined Features: A Practical Approach to Predict Liquid-crystalline Property.
    Chen CH; Tanaka K; Funatsu K
    Mol Inform; 2019 Apr; 38(4):e1800095. PubMed ID: 30548221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach.
    Liu J; Liu H; Chen H; Du X; Zhang B; Hong Z; Sun S; Wang W
    Adv Sci (Weinh); 2020 Jan; 7(1):1901614. PubMed ID: 31921555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.
    Qin H; Luan X; Feng C; Yang D; Zhang G
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29231902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating the Discovery of Transition Metal Borides by Machine Learning on Small Data Sets.
    Sun Y; Wang G; Li K; Peng L; Zhou J; Sun Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29278-29286. PubMed ID: 37282501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the Band Gaps of Inorganic Solids by Machine Learning.
    Zhuo Y; Mansouri Tehrani A; Brgoch J
    J Phys Chem Lett; 2018 Apr; 9(7):1668-1673. PubMed ID: 29532658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing material property prediction: using physics-informed machine learning models for viscosity.
    Chew AK; Sender M; Kaplan Z; Chandrasekaran A; Chief Elk J; Browning AR; Kwak HS; Halls MD; Afzal MAF
    J Cheminform; 2024 Mar; 16(1):31. PubMed ID: 38486289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.
    Jalem R; Nakayama M; Noda Y; Le T; Takeuchi I; Tateyama Y; Yamazaki H
    Sci Technol Adv Mater; 2018; 19(1):231-242. PubMed ID: 29707064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data-Driven Approach to Predicting Tablet Properties after Accelerated Test Using Raw Material Property Database and Machine Learning.
    Hayashi Y; Nakano Y; Marumo Y; Kumada S; Okada K; Onuki Y
    Chem Pharm Bull (Tokyo); 2023; 71(6):406-415. PubMed ID: 37258193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for the structure-energy-property landscapes of molecular crystals.
    Musil F; De S; Yang J; Campbell JE; Day GM; Ceriotti M
    Chem Sci; 2018 Feb; 9(5):1289-1300. PubMed ID: 29675175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases.
    Perim E; Lee D; Liu Y; Toher C; Gong P; Li Y; Simmons WN; Levy O; Vlassak JJ; Schroers J; Curtarolo S
    Nat Commun; 2016 Aug; 7():12315. PubMed ID: 27480126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure to Property: Chemical Element Embeddings for Predicting Electronic Properties of Crystals.
    Shermukhamedov S; Mamurjonova D; Maihom T; Probst M
    J Chem Inf Model; 2024 Aug; 64(15):5762-5770. PubMed ID: 39007646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven learning and prediction of inorganic crystal structures.
    Deringer VL; Proserpio DM; Csányi G; Pickard CJ
    Faraday Discuss; 2018 Oct; 211(0):45-59. PubMed ID: 30043006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds.
    de Jong M; Chen W; Notestine R; Persson K; Ceder G; Jain A; Asta M; Gamst A
    Sci Rep; 2016 Oct; 6():34256. PubMed ID: 27694824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.