BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2858097)

  • 1. Purified hydrophobic proteins, chargerins, are essential for energy transduction in oxidative phosphorylation.
    Higuti T; Takigawa M; Kotera Y; Oka H; Uchida J; Arakaki R; Fujita T; Ogawa T
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1331-5. PubMed ID: 2858097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational coupling in H+-pumps and ATP synthesis--its analysis with anisotropic inhibitors of energy transduction in oxidative phosphorylation.
    Higuti T
    Mol Cell Biochem; 1984; 61(1):37-61. PubMed ID: 6323966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoaffinity labeling of a mitochondrial hydrophobic protein by an anisotropic inhibitor of energy transduction in oxidative phosphorylation.
    Higuti T; Ohe T; Arakaki N; Kotera Y
    J Biol Chem; 1981 Oct; 256(19):9855-60. PubMed ID: 7275983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrophobic protein, chargerin II, purified from rat liver mitochondria is encoded in the unidentified reading frame A6L of mitochondrial DNA.
    Higuti T; Negama T; Takigawa M; Uchida J; Yamane T; Asai T; Tani I; Oeda K; Shimizu M; Nakamura K
    J Biol Chem; 1988 May; 263(14):6772-6. PubMed ID: 3360805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunochemical study of role of chargerin II, a product of URFA6L of mitochondrial DNA in energy transduction of rat liver mitochondria.
    Uchida J; Takigawa M; Yamane T; Negama T; Tani I; Higuti T
    Biochem Biophys Res Commun; 1987 Aug; 146(3):953-8. PubMed ID: 3113438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry of chargerin II (A6L) in the H(+)-ATP synthase of rat liver mitochondria.
    Muraguchi M; Yoshihara Y; Tunemitu T; Tani I; Higuti T
    Biochem Biophys Res Commun; 1990 Apr; 168(1):226-31. PubMed ID: 2139330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation of chargerin II (A6L) in the ATP synthase of rat liver mitochondria determined with antibodies against peptides of the protein.
    Oda T; Futaki S; Kitagawa K; Yoshihara Y; Tani I; Higuti T
    Biochem Biophys Res Commun; 1989 Nov; 165(1):449-56. PubMed ID: 2531582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Conformational coupling in H+-pumps and ATP synthesis--analysis with anisotropic inhibitors of energy transduction in oxidative phosphorylation].
    Higuti T
    Seikagaku; 1984 Mar; 56(3):151-83. PubMed ID: 6379068
    [No Abstract]   [Full Text] [Related]  

  • 9. Sidedness of inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by ethidium bromide.
    Higuti T; Yokota M; Arakaki N; Hattori A; Tani I
    Biochim Biophys Acta; 1978 Aug; 503(2):211-22. PubMed ID: 28755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenyltetrazolium and its derivatives are anisotropic inhibitors of energy transduction in oxidative phosphorylation in rat liver mitochondria.
    Higuti T; Arakaki R; Kotera Y; Takigawa M; Tani I; Shibuya M
    Biochim Biophys Acta; 1983 Oct; 725(1):1-9. PubMed ID: 6626537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of oxidative phosphorylation in the inner membrane of rat liver mitochondria by calcium ions.
    Evtodienko YV; Azarashvili TS; Teplova VV; Odinokova IV; Saris N
    Biochemistry (Mosc); 2000 Sep; 65(9):1023-6. PubMed ID: 11042493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-sensitive K+ channel in the mitochondrial inner membrane.
    Inoue I; Nagase H; Kishi K; Higuti T
    Nature; 1991 Jul; 352(6332):244-7. PubMed ID: 1857420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligomycin sensitivity conferring protein of mitochondrial ATP synthase: deletions in the N-terminal end cause defects in interactions with F1, while deletions in the C-terminal end cause defects in interactions with F0.
    Joshi S; Cao GJ; Nath C; Shah J
    Biochemistry; 1996 Sep; 35(37):12094-103. PubMed ID: 8810915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study.
    Schwerzmann K; Cruz-Orive LM; Eggman R; Sänger A; Weibel ER
    J Cell Biol; 1986 Jan; 102(1):97-103. PubMed ID: 2867101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oligomycin sensitivity conferring protein of rat liver mitochondrial ATP synthase: arginine 94 is important for the binding of OSCP to F1.
    Golden TR; Pedersen PL
    Biochemistry; 1998 Sep; 37(39):13871-81. PubMed ID: 9753477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.
    Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P
    Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of mitochondrial respiratory function after short-term anoxia.
    Aw TY; Andersson BS; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C362-8. PubMed ID: 2882683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A disorder in the energy-conversion processes in the liver mitochondria of rats under the action of sanguinarin and AFMA].
    Beliaeva TN; Faddeeva MD
    Tsitologiia; 1995; 37(3):237-48. PubMed ID: 8553463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.