These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 28580973)

  • 1. The particle in the spider's web: transport through biological hydrogels.
    Witten J; Ribbeck K
    Nanoscale; 2017 Jun; 9(24):8080-8095. PubMed ID: 28580973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological hydrogels as selective diffusion barriers.
    Lieleg O; Ribbeck K
    Trends Cell Biol; 2011 Sep; 21(9):543-51. PubMed ID: 21727007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass.
    Lieleg O; Baumgärtel RM; Bausch AR
    Biophys J; 2009 Sep; 97(6):1569-77. PubMed ID: 19751661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.
    Li LD; Crouzier T; Sarkar A; Dunphy L; Han J; Ribbeck K
    Biophys J; 2013 Sep; 105(6):1357-65. PubMed ID: 24047986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers.
    Yu M; Xu L; Tian F; Su Q; Zheng N; Yang Y; Wang J; Wang A; Zhu C; Guo S; Zhang X; Gan Y; Shi X; Gao H
    Nat Commun; 2018 Jul; 9(1):2607. PubMed ID: 29973592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle transport through hydrogels is charge asymmetric.
    Zhang X; Hansing J; Netz RR; DeRouchey JE
    Biophys J; 2015 Feb; 108(3):530-9. PubMed ID: 25650921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels.
    Yu M; Song W; Tian F; Dai Z; Zhu Q; Ahmad E; Guo S; Zhu C; Zhong H; Yuan Y; Zhang T; Yi X; Shi X; Gan Y; Gao H
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5362-5369. PubMed ID: 30837316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced diffusion by binding to the crosslinks of a polymer gel.
    Goodrich CP; Brenner MP; Ribbeck K
    Nat Commun; 2018 Oct; 9(1):4348. PubMed ID: 30341303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of particle translocation through mucin hydrogels.
    Lieleg O; Vladescu I; Ribbeck K
    Biophys J; 2010 May; 98(9):1782-9. PubMed ID: 20441741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration.
    Hansing J; Ciemer C; Kim WK; Zhang X; DeRouchey JE; Netz RR
    Eur Phys J E Soft Matter; 2016 May; 39(5):53. PubMed ID: 27167077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adsorption chromatography assay to probe bulk particle transport through hydrogels.
    Vladescu I; Lieleg O; Jang S; Ribbeck K
    J Pharm Sci; 2012 Jan; 101(1):436-42. PubMed ID: 21905030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels.
    Racine L; Guliyeva A; Wang I; Larreta-Garde V; Auzély-Velty R; Texier I
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleopore-Inspired Polymer Hydrogels for Selective Biomolecular Transport.
    Yang YJ; Mai DJ; Dursch TJ; Olsen BD
    Biomacromolecules; 2018 Oct; 19(10):3905-3916. PubMed ID: 30183264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery.
    Grillo R; Dias FV; Querobino SM; Alberto-Silva C; Fraceto LF; de Paula E; de Araujo DR
    Colloids Surf B Biointerfaces; 2019 Feb; 174():56-62. PubMed ID: 30439638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanoparticles as hybrid systems for specific medical applications.
    Mousavi Nejad Z; Torabinejad B; Davachi SM; Zamanian A; Saeedi Garakani S; Najafi F; Nezafati N
    Int J Biol Macromol; 2019 Apr; 126():193-208. PubMed ID: 30583002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels for dermal and transdermal drug delivery.
    Labie H; Blanzat M
    Biomater Sci; 2023 Jun; 11(12):4073-4093. PubMed ID: 37060109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reversible hydrogel membrane for controlling the delivery of macromolecules.
    Tang M; Zhang R; Bowyer A; Eisenthal R; Hubble J
    Biotechnol Bioeng; 2003 Apr; 82(1):47-53. PubMed ID: 12569623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly.
    Adibnia V; Mirbagheri M; Latreille PL; Faivre J; Cécyre B; Robert J; Bouchard JF; Martinez VA; Delair T; David L; Hwang DK; Banquy X
    Acta Biomater; 2019 Nov; 99():211-219. PubMed ID: 31473363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of caffeine release from crosslinked water-swellable gelatin and gelatin-maltodextrin hydrogels.
    Abbasi A; Eslamian M; Rousseau D
    Drug Deliv; 2008 Sep; 15(7):455-63. PubMed ID: 18712623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.