These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28580994)

  • 21. Stability of Criegee intermediates formed by ozonolysis of different double bonds.
    Kalinowski J; Heinonen P; Kilpeläinen I; Räsänen M; Gerber RB
    J Phys Chem A; 2015 Mar; 119(11):2318-25. PubMed ID: 25188402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene.
    Carlsson PT; Keunecke C; Krüger BC; Maaß MC; Zeuch T
    Phys Chem Chem Phys; 2012 Dec; 14(45):15637-40. PubMed ID: 23090096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unimolecular Reaction Rate Measurement of
    Zhou X; Liu Y; Dong W; Yang X
    J Phys Chem Lett; 2019 Sep; 10(17):4817-4821. PubMed ID: 31382744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical study of the gas-phase ozonolysis of beta-pinene (C10H16).
    Nguyen TL; Peeters J; Vereecken L
    Phys Chem Chem Phys; 2009 Jul; 11(27):5643-56. PubMed ID: 19842482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.
    Kristensen K; Jensen LN; Glasius M; Bilde M
    Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.
    Kuwata KT; Hermes MR; Carlson MJ; Zogg CK
    J Phys Chem A; 2010 Sep; 114(34):9192-204. PubMed ID: 20701322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substituent Effects on the Electronic Spectroscopy of Four-Carbon Criegee Intermediates.
    Liu T; Zou M; Caracciolo A; Sojdak CA; Lester MI
    J Phys Chem A; 2022 Sep; 126(38):6734-6741. PubMed ID: 36108247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gas-phase ozonolysis of furans, methylfurans, and dimethylfurans in the atmosphere.
    Li M; Liu Y; Wang L
    Phys Chem Chem Phys; 2018 Oct; 20(38):24735-24743. PubMed ID: 30225482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Criegee intermediate reaction with CO: mechanism, barriers, conformer-dependence, and implications for ozonolysis chemistry.
    Kumar M; Busch DH; Subramaniam B; Thompson WH
    J Phys Chem A; 2014 Mar; 118(10):1887-94. PubMed ID: 24527836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of gas-phase ozonolysis of sabinene in the atmosphere.
    Wang L; Wang L
    Phys Chem Chem Phys; 2017 Sep; 19(35):24209-24218. PubMed ID: 28848955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influences of ammonia on aerosol formation in the ozonolysis of styrene: roles of Criegee intermediate reactions.
    Ma Q; Lin X; Yang C; Long B; Gai Y; Zhang W
    R Soc Open Sci; 2018 May; 5(5):172171. PubMed ID: 29892406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.