BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 28581493)

  • 1. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
    Kuscu C; Parlak M; Tufan T; Yang J; Szlachta K; Wei X; Mammadov R; Adli M
    Nat Methods; 2017 Jul; 14(7):710-712. PubMed ID: 28581493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
    Billon P; Bryant EE; Joseph SA; Nambiar TS; Hayward SB; Rothstein R; Ciccia A
    Mol Cell; 2017 Sep; 67(6):1068-1079.e4. PubMed ID: 28890334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors.
    Lee C; Hyun Jo D; Hwang GH; Yu J; Kim JH; Park SE; Kim JS; Kim JH; Bae S
    Mol Ther; 2019 Aug; 27(8):1364-1371. PubMed ID: 31164261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-BETS: a base-editing design tool for generating stop codons.
    Wu Y; He Y; Sretenovic S; Liu S; Cheng Y; Han Y; Liu G; Bao Y; Fang Q; Zheng X; Zhou J; Qi Y; Zhang Y; Zhang T
    Plant Biotechnol J; 2022 Mar; 20(3):499-510. PubMed ID: 34669232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas-mediated targeted genome editing in human cells.
    Yang L; Mali P; Kim-Kiselak C; Church G
    Methods Mol Biol; 2014; 1114():245-67. PubMed ID: 24557908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.
    Basu S; Aryan A; Overcash JM; Samuel GH; Anderson MA; Dahlem TJ; Myles KM; Adelman ZN
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4038-43. PubMed ID: 25775608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of gene disruption induced by cytosine base editing-mediated iSTOP with CRISPR/Cas9-mediated frameshift.
    Dang L; Li G; Wang X; Huang S; Zhang Y; Miao Y; Zeng L; Cui S; Huang X
    Cell Prolif; 2020 May; 53(5):e12820. PubMed ID: 32350961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of CRISPR-Cas9 on target identification and validation.
    Moore JD
    Drug Discov Today; 2015 Apr; 20(4):450-7. PubMed ID: 25572406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.
    Cheng M; Jin X; Mu L; Wang F; Li W; Zhong X; Liu X; Shen W; Liu Y; Zhou Y
    J Neurosci Res; 2016 Sep; 94(9):814-24. PubMed ID: 27317429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PE-STOP: A versatile tool for installing nonsense substitutions amenable for precise reversion.
    Song Z; Zhang G; Huang S; Liu Y; Li G; Zhou X; Sun J; Gao P; Chen Y; Huang X; Liu J; Wang X
    J Biol Chem; 2023 Aug; 299(8):104942. PubMed ID: 37343700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification.
    Pu J; Frescas D; Zhang B; Feng J
    Exp Biol Med (Maywood); 2015 Aug; 240(8):1065-70. PubMed ID: 25956682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system.
    Irion U; Krauss J; Nüsslein-Volhard C
    Development; 2014 Dec; 141(24):4827-30. PubMed ID: 25411213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum.
    Gilles AF; Schinko JB; Averof M
    Development; 2015 Aug; 142(16):2832-9. PubMed ID: 26160901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9.
    Liu Y; Ma S; Wang X; Chang J; Gao J; Shi R; Zhang J; Lu W; Liu Y; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2014 Jun; 49():35-42. PubMed ID: 24698835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.