These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28581722)
1. The PipX Protein, When Not Bound to Its Targets, Has Its Signaling C-Terminal Helix in a Flexed Conformation. Forcada-Nadal A; Palomino-Schätzlein M; Neira JL; Pineda-Lucena A; Rubio V Biochemistry; 2017 Jun; 56(25):3211-3224. PubMed ID: 28581722 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Llácer JL; Espinosa J; Castells MA; Contreras A; Forchhammer K; Rubio V Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15397-402. PubMed ID: 20716687 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX. Zhao MX; Jiang YL; Xu BY; Chen Y; Zhang CC; Zhou CZ J Mol Biol; 2010 Sep; 402(3):552-9. PubMed ID: 20708625 [TBL] [Abstract][Full Text] [Related]
4. Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Espinosa J; Forchhammer K; Burillo S; Contreras A Mol Microbiol; 2006 Jul; 61(2):457-69. PubMed ID: 16796668 [TBL] [Abstract][Full Text] [Related]
5. PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Espinosa J; Rodríguez-Mateos F; Salinas P; Lanza VF; Dixon R; de la Cruz F; Contreras A Proc Natl Acad Sci U S A; 2014 Jun; 111(23):E2423-30. PubMed ID: 24912181 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis of the cyanobacterial nitrogen regulator PipX. Laichoubi KB; Espinosa J; Castells MA; Contreras A PLoS One; 2012; 7(4):e35845. PubMed ID: 22558239 [TBL] [Abstract][Full Text] [Related]
7. Expanding the Cyanobacterial Nitrogen Regulatory Network: The GntR-Like Regulator PlmA Interacts with the PII-PipX Complex. Labella JI; Obrebska A; Espinosa J; Salinas P; Forcada-Nadal A; Tremiño L; Rubio V; Contreras A Front Microbiol; 2016; 7():1677. PubMed ID: 27840625 [TBL] [Abstract][Full Text] [Related]
8. Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Jerez C; Llop A; Salinas P; Bibak S; Forchhammer K; Contreras A Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731921 [TBL] [Abstract][Full Text] [Related]
9. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942. Sakamoto T; Takatani N; Sonoike K; Jimbo H; Nishiyama Y; Omata T Plant Cell Physiol; 2021 Sep; 62(4):721-731. PubMed ID: 33650637 [TBL] [Abstract][Full Text] [Related]
10. The nitrogen regulator PipX acts in cis to prevent operon polarity. Cantos R; Labella JI; Espinosa J; Contreras A Environ Microbiol Rep; 2019 Aug; 11(4):495-507. PubMed ID: 30126050 [TBL] [Abstract][Full Text] [Related]
11. Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. Zeth K; Fokina O; Forchhammer K J Biol Chem; 2014 Mar; 289(13):8960-72. PubMed ID: 24519945 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the effects of P(II) deficiency and the toxicity of PipX on growth characteristics of the P(II)-Less mutant of the cyanobacterium Synechococcus elongatus. Chang Y; Takatani N; Aichi M; Maeda S; Omata T Plant Cell Physiol; 2013 Sep; 54(9):1504-14. PubMed ID: 23811238 [TBL] [Abstract][Full Text] [Related]
13. Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. Espinosa J; Labella JI; Cantos R; Contreras A Environ Microbiol; 2018 Mar; 20(3):1240-1252. PubMed ID: 29441670 [TBL] [Abstract][Full Text] [Related]
14. Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. Lüddecke J; Forchhammer K PLoS One; 2015; 10(8):e0137114. PubMed ID: 26317540 [TBL] [Abstract][Full Text] [Related]
15. The P Forcada-Nadal A; Llácer JL; Contreras A; Marco-Marín C; Rubio V Front Mol Biosci; 2018; 5():91. PubMed ID: 30483512 [TBL] [Abstract][Full Text] [Related]
16. Effects of spontaneous mutations in PipX functions and regulatory complexes on the cyanobacterium Synechococcus elongatus strain PCC 7942. Espinosa J; Castells MA; Laichoubi KB; Forchhammer K; Contreras A Microbiology (Reading); 2010 May; 156(Pt 5):1517-1526. PubMed ID: 20110304 [TBL] [Abstract][Full Text] [Related]
17. Tuning the in vitro sensing and signaling properties of cyanobacterial PII protein by mutation of key residues. Selim KA; Haffner M; Watzer B; Forchhammer K Sci Rep; 2019 Dec; 9(1):18985. PubMed ID: 31831819 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signalling molecule. Chen HL; Bernard CS; Hubert P; My L; Zhang CC FEBS J; 2014 Feb; 281(4):1241-55. PubMed ID: 24428626 [TBL] [Abstract][Full Text] [Related]
19. Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms. Palanca C; Rubio V FEBS J; 2016 Mar; 283(6):1039-59. PubMed ID: 26744254 [TBL] [Abstract][Full Text] [Related]
20. Studies on cyanobacterial protein PipY shed light on structure, potential functions, and vitamin B Tremiño L; Forcada-Nadal A; Contreras A; Rubio V FEBS Lett; 2017 Oct; 591(20):3431-3442. PubMed ID: 28914444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]