These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28581841)

  • 41. Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda).
    Guerrero-Ferreira RC; Nishiguchi MK
    Cladistics; 2007 Oct; 23(5):497-506. PubMed ID: 22707847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ontogenetic and Experience-Dependent Changes in Defensive Behavior in Captive-Bred Hawaiian Bobtail Squid,
    Seehafer K; Brophy S; Tom SR; Crook RJ
    Front Physiol; 2018; 9():299. PubMed ID: 29651249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Production of ALDH-Like Protein in the Bacterial Light Organ of the Sepiolid Squid Euprymna scolopes.
    Weis VM; Montgomery MK; McFall-Ngai MJ
    Biol Bull; 1993 Jun; 184(3):309-321. PubMed ID: 29300544
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental Concepts in Symbiotic Interactions: Light and Dark, Day and Night, Squid and Legume.
    Hirsch AM; McFall-Ngai MJ
    J Plant Growth Regul; 2000 Jun; 19(2):113-130. PubMed ID: 11038222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.
    Zepeda EA; Veline RJ; Crook RJ
    Biol Bull; 2017 Jun; 232(3):212-218. PubMed ID: 28898600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios.
    Gromek SM; Suria AM; Fullmer MS; Garcia JL; Gogarten JP; Nyholm SV; Balunas MJ
    Front Microbiol; 2016; 7():1342. PubMed ID: 27660622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Tentacular Strike Behavior in Squid: Functional Interdependency of Morphology and Predatory Behaviors During Ontogeny.
    Vidal EAG; Salvador B
    Front Physiol; 2019; 10():1558. PubMed ID: 31956313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid
    Nödl MT; Kerbl A; Walzl MG; Müller GB; de Couet HG
    Front Zool; 2016; 13():44. PubMed ID: 27708680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Draft Genome Sequences of Type VI Secretion System-Encoding Vibrio fischeri Strains FQ-A001 and ES401.
    Bultman KM; Cecere AG; Miyashiro T; Septer AN; Mandel MJ
    Microbiol Resour Announc; 2019 May; 8(20):. PubMed ID: 31097508
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cephalopod Predation Facilitated by Dinoflagellate Luminescence.
    Fleisher KJ; Case JF
    Biol Bull; 1995 Dec; 189(3):263-271. PubMed ID: 29244578
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Orientation Patterns of Japanese Flying Squid Todarodes pacificus Embryos within Egg Masses and Responses of Paralarvae to Light.
    Puneeta P; Vijai D; Yamamoto J; Sakurai Y
    Zoolog Sci; 2018 Aug; 35(4):293-298. PubMed ID: 30079831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early Mode of Life and Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges.
    Villanueva R; Vidal EA; Fernández-Álvarez FÁ; Nabhitabhata J
    PLoS One; 2016; 11(11):e0165334. PubMed ID: 27829039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. THE EVOLUTIONARY ECOLOGY OF A SEPIOLID SQUID-VIBRIO ASSOCIATION: FROM CELL TO ENVIRONMENT.
    Nyholm SV; Nishiguchi MK
    Vie Milieu; 2008; 58(2):175-184. PubMed ID: 20414482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the adhesive dermal secretion of Euprymna scolopes Berry, 1913 (Cephalopoda).
    von Byern J; Cyran N; Klepal W; Nödl MT; Klinger L
    Zoology (Jena); 2017 Feb; 120():73-82. PubMed ID: 27646066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches.
    Guerrero-Ferreira RC; Nishiguchi MK
    Environ Microbiol Rep; 2010 Aug; 2(4):514-523. PubMed ID: 20680094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ULTRASTRUCTURE OF LIGHT ORGANS OF LOLIGINID SQUIDS AND THEIR BACTERIAL SYMBIONTS: A NOVEL MODEL SYSTEM FOR THE STUDY OF MARINE SYMBIOSES.
    Guerrero-Ferreira RC; Nishiguchi MK
    Vie Milieu; 2009; 59(3-4):307-313. PubMed ID: 21152248
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diet Composition and Variability of Wild
    Olmos-Pérez L; Roura Á; Pierce GJ; Boyer S; González ÁF
    Front Physiol; 2017; 8():321. PubMed ID: 28596735
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time Course of Metabolic Capacities in Paralarvae of the Common Octopus,
    Morales AE; Cardenete G; Hidalgo MC; Garrido D; Martín MV; Almansa E
    Front Physiol; 2017; 8():427. PubMed ID: 28670288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ontogeny of the digestive system of the Octopus bimaculatus paralarvae (Verril, 1883).
    López-Peraza DJ; Hernández-Rodríguez M; Barón-Sevilla B
    Springerplus; 2014; 3():22. PubMed ID: 24683531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Factors affecting the luminescence of cell-free extracts of the luminous bacterium, Achromobacter fischeri.
    STREHLER BL; CORMIER MJ
    Arch Biochem Biophys; 1953 Nov; 47(1):16-33. PubMed ID: 13114872
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.