These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28582397)

  • 1. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation.
    Kim JK; Sontag ED
    PLoS Comput Biol; 2017 Jun; 13(6):e1005571. PubMed ID: 28582397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity Analysis for Multiscale Stochastic Reaction Networks Using Hybrid Approximations.
    Gupta A; Khammash M
    Bull Math Biol; 2019 Aug; 81(8):3121-3158. PubMed ID: 30302636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive hybrid simulations for multiscale stochastic reaction networks.
    Hepp B; Gupta A; Khammash M
    J Chem Phys; 2015 Jan; 142(3):034118. PubMed ID: 25612700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid stochastic simplifications for multiscale gene networks.
    Crudu A; Debussche A; Radulescu O
    BMC Syst Biol; 2009 Sep; 3():89. PubMed ID: 19735554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.
    Gibiansky L; Gibiansky E
    J Pharmacokinet Pharmacodyn; 2017 Oct; 44(5):463-475. PubMed ID: 28725976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks.
    Samant A; Ogunnaike BA; Vlachos DG
    BMC Bioinformatics; 2007 May; 8():175. PubMed ID: 17524148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How spatial heterogeneity shapes multiscale biochemical reaction network dynamics.
    Pfaffelhuber P; Popovic L
    J R Soc Interface; 2015 Mar; 12(104):20141106. PubMed ID: 25652460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
    Caglar MU; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1125-36. PubMed ID: 24384703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow update stochastic simulation algorithms for modeling complex biochemical networks.
    Ghosh D; De RK
    Biosystems; 2017 Dec; 162():135-146. PubMed ID: 29080799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
    Salis H; Sotiropoulos V; Kaznessis YN
    BMC Bioinformatics; 2006 Feb; 7():93. PubMed ID: 16504125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling signal transduction networks: a comparison of two stochastic kinetic simulation algorithms.
    Pettigrew MF; Resat H
    J Chem Phys; 2005 Sep; 123(11):114707. PubMed ID: 16392583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The validity of quasi-steady-state approximations in discrete stochastic simulations.
    Kim JK; Josić K; Bennett MR
    Biophys J; 2014 Aug; 107(3):783-793. PubMed ID: 25099817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.
    Meng XF; Baetica AA; Singhal V; Murray RM
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of stationary distributions of biochemical reaction networks via structure transformation.
    Hong H; Kim J; Ali Al-Radhawi M; Sontag ED; Kim JK
    Commun Biol; 2021 May; 4(1):620. PubMed ID: 34031517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks.
    Mélykúti B; Hespanha JP; Khammash M
    J R Soc Interface; 2014 Aug; 11(97):20140054. PubMed ID: 24920118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities.
    Song YM; Hong H; Kim JK
    PLoS Comput Biol; 2021 Oct; 17(10):e1008952. PubMed ID: 34662330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.