These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. [Transport of calcium to synaptosomes and subcellular membrane fractions of the brain: effects of opioid peptides]. Kravtsov GM; Riazhskiĭ GG; Orlov SN Biokhimiia; 1982 Dec; 47(12):2006-14. PubMed ID: 6297624 [TBL] [Abstract][Full Text] [Related]
6. Motility effects of opioid peptides in dog intestine. Burks TF; Hirning LD; Galligan JJ; Davis TP Life Sci; 1982 Nov 15-22; 31(20-21):2237-40. PubMed ID: 6298519 [TBL] [Abstract][Full Text] [Related]
7. Effects of dynorphin A (1-17), dynorphin A (1-13) and D-ala2-D-leu5-enkephalin on the excitability of pyramidal cells in CA1 and CA2 of the rat hippocampus in vitro. Vidal C; Maier R; Zieglgänsberger W Neuropeptides; 1984 Dec; 5(1-3):237-40. PubMed ID: 6152322 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the effectiveness of different opioid peptides in suppressing heroin withdrawal. Wen HL; Ho WK; Wen PY Eur J Pharmacol; 1984 Apr; 100(2):155-62. PubMed ID: 6329773 [TBL] [Abstract][Full Text] [Related]
9. Dynorphin-(1-13): the effect of in vivo treatment on opiate bindings in vitro. Jen MF; Garzon J; Loh HH; Lee NM Eur J Pharmacol; 1983 Jul; 91(1):95-9. PubMed ID: 6311575 [TBL] [Abstract][Full Text] [Related]
11. The occurrence and receptor specificity of endogenous opioid peptides within the pancreas and liver of the rat. Comparison with brain. Khawaja XZ; Green IC; Thorpe JR; Titheradge MA Biochem J; 1990 Apr; 267(1):233-40. PubMed ID: 1970240 [TBL] [Abstract][Full Text] [Related]
12. Behavioral effects of opioid peptides selective for mu or delta receptors. I. Morphine-like discriminative stimulus effects. Locke KW; Holtzman SG J Pharmacol Exp Ther; 1986 Sep; 238(3):990-6. PubMed ID: 3018230 [TBL] [Abstract][Full Text] [Related]
13. Actions of D-Ala2-D-Leu5-enkephalin and dynorphin A (1-17) on neocortical neurons in vitro. Sutor B; Zieglgänsberger W Neuropeptides; 1984 Dec; 5(1-3):241-4. PubMed ID: 6152323 [TBL] [Abstract][Full Text] [Related]
14. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Kirby GC; McQueen DS Br J Pharmacol; 1986 Aug; 88(4):889-98. PubMed ID: 2874862 [TBL] [Abstract][Full Text] [Related]
15. Mutual antagonism of kappa-opiate and alpha 2-adrenoceptor agonist effects on intrasynaptosomal free [Ca2+]i. Adamson P; McWilliam JR; Brammer MJ; Campbell IC J Neurochem; 1988 Jan; 50(1):65-8. PubMed ID: 2891789 [TBL] [Abstract][Full Text] [Related]
16. The involvement of opioid peptides in stress-induced analgesia in the slug Arion ater. Dalton LM; Widdowson PS Peptides; 1989; 10(1):9-13. PubMed ID: 2568626 [TBL] [Abstract][Full Text] [Related]
17. Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro. Bicknell RJ; Chapman C; Leng G Neuroendocrinology; 1985 Aug; 41(2):142-8. PubMed ID: 2864649 [TBL] [Abstract][Full Text] [Related]
18. Opioid peptides decrease noradrenaline release and blood pressure in the rabbit at peripheral receptors. Szabo B; Hedler L; Ensinger H; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):50-6. PubMed ID: 3005885 [TBL] [Abstract][Full Text] [Related]
19. Effect of human B-endorphin on the binding of different opiates to mouse brain membranes. Garzón J; Sánchez-Blázquez P; Lee NM Life Sci; 1983; 33 Suppl 1():279-82. PubMed ID: 6319877 [TBL] [Abstract][Full Text] [Related]
20. Calmodulin content in rabbit reticulocyte and the influence of opioid peptides on calmodulin activity in its membrane. Liu JS; Liu Y; Jiao HY; Chin YC NIDA Res Monogr; 1986; 75():125-8. PubMed ID: 2893262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]