These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28582676)

  • 1. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.
    Rossi L; Zhang W; Ma X
    Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants.
    Rossi L; Bagheri M; Zhang W; Chen Z; Burken JG; Ma X
    Environ Pollut; 2019 Mar; 246():381-389. PubMed ID: 30577006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants.
    Gao L; Liu M; Wang M; Shen Q; Guo S
    Plant Cell Physiol; 2016 Nov; 57(11):2323-2333. PubMed ID: 27519313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K
    Liu J; Li G; Chen L; Gu J; Wu H; Li Z
    J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.
    Liu J; Gao H; Wang X; Zheng Q; Wang C; Wang X; Wang Q
    Plant Biol (Stuttg); 2014 Mar; 16(2):440-50. PubMed ID: 24033882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions.
    Cao Z; Rossi L; Stowers C; Zhang W; Lombardini L; Ma X
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):930-939. PubMed ID: 29076022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canola (
    Sun L; Cao X; Du J; Wang Y; Zhang F
    Funct Plant Biol; 2024 Aug; 51():. PubMed ID: 39088691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (
    Javeed HMR; Ali M; Skalicky M; Nawaz F; Qamar R; Rehman AU; Faheem M; Mubeen M; Iqbal MM; Rahman MHU; Vachova P; Brestic M; Baazeem A; El Sabagh A
    Molecules; 2021 May; 26(11):. PubMed ID: 34070241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress.
    Yang Y; Zheng Q; Liu M; Long X; Liu Z; Shen Q; Guo S
    Plant Cell Physiol; 2012 Jun; 53(6):1083-92. PubMed ID: 22514091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of cerium oxide nanoparticles to the hyperaccumulator Sedum alfredii decreases the uptake of cadmium via the apoplastic pathway.
    Liu Y; Persson DP; Li J; Liang Y; Li T
    J Hazard Mater; 2021 Sep; 417():125955. PubMed ID: 33975168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).
    Sun XE; Feng XX; Li C; Zhang ZP; Wang LJ
    Physiol Plant; 2015 Jun; 154(2):223-42. PubMed ID: 25220348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential response of proline metabolism defense, Na
    Yan L; Lu M; Riaz M; Gao G; Tong K; Yu H; Wang L; Wang L; Cui K; Wang J; Niu Y
    Physiol Plant; 2024; 176(4):e14460. PubMed ID: 39091116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.
    Chakraborty K; Bose J; Shabala L; Eyles A; Shabala S
    Physiol Plant; 2016 Oct; 158(2):135-51. PubMed ID: 27062083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.
    Ma X; Wang Q; Rossi L; Zhang W
    Environ Sci Technol; 2016 Jul; 50(13):6793-802. PubMed ID: 26691446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage.
    Long W; Zou X; Zhang X
    PLoS One; 2015; 10(2):e0116217. PubMed ID: 25679513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.
    Chakraborty K; Bose J; Shabala L; Shabala S
    J Exp Bot; 2016 Aug; 67(15):4611-25. PubMed ID: 27340231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities.
    Khan MN; Li Y; Khan Z; Chen L; Liu J; Hu J; Wu H; Li Z
    J Nanobiotechnology; 2021 Sep; 19(1):276. PubMed ID: 34530815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants.
    Benáková M; Ahmadi H; Dučaiová Z; Tylová E; Clemens S; Tůma J
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20705-20716. PubMed ID: 28714046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.).
    Yong HY; Wang C; Bancroft I; Li F; Wu X; Kitashiba H; Nishio T
    Planta; 2015 Jul; 242(1):313-26. PubMed ID: 25921693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.