BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28582708)

  • 1. New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing.
    Aydemir N; Chan E; Baek P; Barker D; Williams DE; Travas-Sejdic J
    Biosens Bioelectron; 2017 Nov; 97():128-135. PubMed ID: 28582708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers.
    Kannan B; Williams DE; Booth MA; Travas-Sejdic J
    Anal Chem; 2011 May; 83(9):3415-21. PubMed ID: 21466209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode.
    Özcan A; İlkbaş S; Atılır Özcan A
    Talanta; 2017 Apr; 165():489-495. PubMed ID: 28153287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance.
    Booth MA; Harbison S; Travas-Sejdic J
    Biosens Bioelectron; 2011 Oct; 28(1):362-7. PubMed ID: 21840199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA detection using functionalized conducting polymers.
    Travas-Sejdic J; Peng H; Yu HH; Luo SC
    Methods Mol Biol; 2011; 751():437-52. PubMed ID: 21674347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA hybridization electrochemical biosensor using a functionalized polythiophene.
    Uygun A
    Talanta; 2009 Jul; 79(2):194-8. PubMed ID: 19559864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free electrochemical genosensor based on mesoporous silica thin film.
    Saadaoui M; Fernández I; Luna G; Díez P; Campuzano S; Raouafi N; Sánchez A; Pingarrón JM; Villalonga R
    Anal Bioanal Chem; 2016 Oct; 408(26):7321-7. PubMed ID: 27236313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tin oxide nanoparticles-polymer modified single-use sensors for electrochemical monitoring of label-free DNA hybridization.
    Muti M; Kuralay F; Erdem A; Abaci S; Yumak T; Sinağ A
    Talanta; 2010 Oct; 82(5):1680-6. PubMed ID: 20875563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezomicrogravimetric and impedimetric oligonucleotide biosensors using conducting polymers of biotinylated bis(2,2'-bithien-5-yl)methane as recognition units.
    Sosnowska M; Pieta P; Sharma PS; Chitta R; Chandra BK; Bandi V; D'Souza F; Kutner W
    Anal Chem; 2013 Aug; 85(15):7454-61. PubMed ID: 23829162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-free amplification for sensitive electrochemical detection of DNA via target-catalyzed hairpin assembly assisted current change.
    Qian Y; Wang C; Gao F
    Talanta; 2014 Dec; 130():33-8. PubMed ID: 25159376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemical sensor for fast reagent-free DNA detection.
    Komarova E; Aldissi M; Bogomolova A
    Biosens Bioelectron; 2005 Jul; 21(1):182-9. PubMed ID: 15967367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.
    Kongpeth J; Jampasa S; Chaumpluk P; Chailapakul O; Vilaivan T
    Talanta; 2016; 146():318-25. PubMed ID: 26695270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the size of electrode on electrochemical properties of ferrocene-functionalized polypyrrole towards DNA sensing.
    Lê HQ; Chebil S; Makrouf B; Sauriat-Dorizon H; Mandrand B; Korri-Youssoufi H
    Talanta; 2010 Jun; 81(4-5):1250-7. PubMed ID: 20441892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two independent label-free detection methods in one electrochemical DNA sensor.
    Tosar JP; Keel K; Laíz J
    Biosens Bioelectron; 2009 Jun; 24(10):3036-42. PubMed ID: 19359160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.
    Carpini G; Lucarelli F; Marrazza G; Mascini M
    Biosens Bioelectron; 2004 Sep; 20(2):167-75. PubMed ID: 15308218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe.
    Gao ZF; Chen DM; Lei JL; Luo HQ; Li NB
    Anal Chim Acta; 2015 Oct; 897():10-6. PubMed ID: 26515000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment.
    Yang J; Jiao K; Yang T
    Anal Bioanal Chem; 2007 Oct; 389(3):913-21. PubMed ID: 17851654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive electrochemical assay for silver ion detection based on un-labeled C-rich ssDNA probe and controlled assembly of MWCNTs.
    Yan G; Wang Y; He X; Wang K; Su J; Chen Z; Qing Z
    Talanta; 2012 May; 94():178-83. PubMed ID: 22608432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing.
    Kilic T; Gessner I; Cho YK; Jeong N; Quintana J; Weissleder R; Lee H
    Adv Mater; 2022 Feb; 34(8):e2107892. PubMed ID: 34890082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.