These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28582714)

  • 1. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Sep; 338():334-342. PubMed ID: 28582714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flame deflagration in side-on vented detonation tubes: A large scale study.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2018 Mar; 345():38-47. PubMed ID: 29128725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure and Flame Propagation Characteristics of Suspended Coal Dust Explosions Induced by Gas Explosions.
    Xun Jing G; Sun Y; Shuai Guo S
    ACS Omega; 2024 Apr; 9(14):16648-16655. PubMed ID: 38617661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Oct; 339():301-309. PubMed ID: 28658639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material.
    Wang Q; Chang W; Liu S; Li Z; Zhu K
    RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.
    Li S; Liu Q; Chen X; Huang J; Li J
    J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floor dust erosion during early stages of coal dust explosion development.
    Harris ML; Sapko MJ
    Int J Min Sci Technol; 2019 Dec; 29(6):825-830. PubMed ID: 31911844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental data revealing explosion characteristics of methane, air, and coal mixtures.
    Deng J; Qu J; Wang QH; Xiao Y; Cheng YC; Shu CM
    RSC Adv; 2019 Aug; 9(42):24627-24637. PubMed ID: 35527867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple explosions induced by the deposited dust layer in enclosed pipeline.
    Song Y; Zhang Q
    J Hazard Mater; 2019 Jun; 371():423-432. PubMed ID: 30875569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: Based on flame propagation, thermal decomposition and residue analysis.
    Huang C; Yuan B; Zhang H; Zhao Q; Li P; Chen X; Yun Y; Chen G; Feng M; Li Y
    J Hazard Mater; 2021 Feb; 403():123653. PubMed ID: 32827861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures.
    Van den Schoor F; Hermanns RT; van Oijen JA; Verplaetsen F; de Goey LP
    J Hazard Mater; 2008 Feb; 150(3):573-81. PubMed ID: 17560716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The forensic medical expertise of fatal mechanical trauma in cases of methane and coal dust explosion in a mine].
    Mikhaĭlovskiĭ IaA; Shevchenko VV; Stepanova RA; Pavlova IuS; Karmushina GV
    Sud Med Ekspert; 1992; 35(3):14-6. PubMed ID: 1455468
    [No Abstract]   [Full Text] [Related]  

  • 16. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
    Chaudhuri S; Wu F; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033005. PubMed ID: 24125342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Moisture on Methane Adsorption Characteristics of Long-Flame Coal.
    Chen X; Wang X; Zhao S; Kang N; Feng S
    ACS Omega; 2022 May; 7(19):16670-16677. PubMed ID: 35601315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave.
    Sher E; Moshkovich-Makarenko I; Moshkovich Y; Cukurel B
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.