These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28582714)
21. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave. Sher E; Moshkovich-Makarenko I; Moshkovich Y; Cukurel B Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286781 [TBL] [Abstract][Full Text] [Related]
22. Influence of Different Bifurcation Angles on the Flame Propagation of Gas Explosions in Three-Way Bifurcated Pipes. Xie B; Luan Z; Chen D; Zhong S; Ding H; Du Y ACS Omega; 2022 Jun; 7(25):21845-21859. PubMed ID: 35785322 [TBL] [Abstract][Full Text] [Related]
23. On the pressure wave emanating from a deflagration flame front. Bisio V; Montomoli F; Rossin S; Tagarielli VL Heliyon; 2024 Feb; 10(3):e26012. PubMed ID: 38371964 [TBL] [Abstract][Full Text] [Related]
24. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures. Thomas GO J Hazard Mater; 2009 Apr; 163(2-3):783-94. PubMed ID: 18782653 [TBL] [Abstract][Full Text] [Related]
25. Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration. Huang C; Chen X; Yuan B; Zhang H; Shang S; Zhao Q; Dai H; He S; Zhang Y; Niu Y J Hazard Mater; 2020 Jul; 394():122584. PubMed ID: 32299041 [TBL] [Abstract][Full Text] [Related]
26. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. Cao X; Ren J; Zhou Y; Wang Q; Gao X; Bi M J Hazard Mater; 2015 Mar; 285():311-8. PubMed ID: 25528229 [TBL] [Abstract][Full Text] [Related]
27. Research on Explosion Pressure Characteristics of Long Flame Coal Dust and the Inhibition Effect of Different Explosion Suppressants. Liu T; Gao Z; Xu Y; Duan G; Wang X ACS Omega; 2023 Oct; 8(39):35919-35928. PubMed ID: 37810723 [TBL] [Abstract][Full Text] [Related]
28. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section. Patts JR; Barone TL J Occup Environ Hyg; 2017 May; 14(5):323-334. PubMed ID: 27792474 [TBL] [Abstract][Full Text] [Related]
29. Influence of initial gas concentration on methane-air mixtures explosion characteristics and implications for safety management. Jia Q; Si R; Wang L; Li Z; Xue S Sci Rep; 2023 Aug; 13(1):13519. PubMed ID: 37598244 [TBL] [Abstract][Full Text] [Related]
30. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel. Razus D; Brinzea V; Mitu M; Movileanu C; Oancea D J Hazard Mater; 2011 Jun; 190(1-3):891-6. PubMed ID: 21514044 [TBL] [Abstract][Full Text] [Related]
31. Influencing factors of coking coal dust explosion pressure and flame and effect of inert dust on its explosion suppression. Liu T; Zhao X; Tian W; Jia R; Wang N; Cai Z Sci Rep; 2022 Oct; 12(1):17610. PubMed ID: 36266425 [TBL] [Abstract][Full Text] [Related]
32. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section. Duan Q; Xiao H; Gao W; Gong L; Sun J J Hazard Mater; 2016 Dec; 320():18-26. PubMed ID: 27505290 [TBL] [Abstract][Full Text] [Related]
33. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist. Cao X; Ren J; Bi M; Zhou Y; Li Y J Hazard Mater; 2017 Feb; 324(Pt B):489-497. PubMed ID: 27843023 [TBL] [Abstract][Full Text] [Related]
34. Experimental Study of the Effect of CO/H Li Z; Lu L; Yao M; Wang Z; Luo Z; Huang Q; Liu T; Pan X ACS Omega; 2024 Sep; 9(35):36961-36968. PubMed ID: 39246482 [TBL] [Abstract][Full Text] [Related]
35. High methane natural gas/air explosion characteristics in confined vessel. Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457 [TBL] [Abstract][Full Text] [Related]
36. Differential pressure response of 25-mm-diameter glass fiber filters challenged with coal and limestone dust mixtures. Dobroski H; Tuchman DP; Vinson RP; Timko RJ Appl Occup Environ Hyg; 2002 Feb; 17(2):96-103. PubMed ID: 11843204 [TBL] [Abstract][Full Text] [Related]
37. The burning rate of energetic films of nanostructured porous silicon. Plummer A; Kuznetsov V; Joyner T; Shapter J; Voelcker NH Small; 2011 Dec; 7(23):3392-8. PubMed ID: 22009919 [TBL] [Abstract][Full Text] [Related]
38. [The forensic medical expertise of carbon monoxide poisonings in the cases of the explosion of methane and coal dust in a mine]. Mikhaĭlovskiĭ IaA; Shevchenko VV; Stepanova RA; Pavlova IuS; Karmushina GV Sud Med Ekspert; 1991; 34(3):39-40. PubMed ID: 1759289 [No Abstract] [Full Text] [Related]
39. Characteristics of coal mine ventilation air flows. Su S; Chen H; Teakle P; Xue S J Environ Manage; 2008 Jan; 86(1):44-62. PubMed ID: 17239518 [TBL] [Abstract][Full Text] [Related]
40. Study on detonation characteristics of pulverized coal and evolution law of detonation residue. Guo J; Ge S; Guo Y; Liang J; Yang R Sci Rep; 2024 May; 14(1):11691. PubMed ID: 38778094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]