These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28582714)

  • 41. Dust explosion hazard of pulverized fuel carry-over.
    Amyotte PR; Basu A; Khan FI
    J Hazard Mater; 2005 Jun; 122(1-2):23-30. PubMed ID: 15905025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of compressibility in moderating flame acceleration in tubes.
    Bychkov V; Akkerman V; Valiev D; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026309. PubMed ID: 20365653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks.
    Jia J; Chen Y; Che G; Zhu J; Wang F; Jia P
    Sci Rep; 2021 Oct; 11(1):21204. PubMed ID: 34707179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.
    Wu D; Norman F; Verplaetsen F; Van den Bulck E
    J Hazard Mater; 2016 Apr; 307():274-80. PubMed ID: 26799218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of mass fraction of long flame coal on swelling pressure and microstructures of cokes.
    Zhao Z; Bai J; Xu J; Zhang Y; Zhong X; Liu H; Yang D
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S118-21. PubMed ID: 25078812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.
    Pang L; Wang C; Han M; Xu Z
    J Hazard Mater; 2015 Dec; 299():174-80. PubMed ID: 26124063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation.
    Nie B; He X; Zhang R; Chen W; Zhang J
    J Hazard Mater; 2011 Aug; 192(2):741-7. PubMed ID: 21704454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.
    Jiang J; Cheng Y; Mou J; Jin K; Cui J
    PLoS One; 2015; 10(7):e0132355. PubMed ID: 26161959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of flexible obstacles with different thicknesses on explosion propagation of premixed methane-air in a confined duct.
    Wang Z; Zhang Z; Yu J; Zhai Z
    Heliyon; 2023 Aug; 9(8):e18803. PubMed ID: 37609431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Research on Methane Measurement and Interference Factors in Coal Mines.
    Wu X; Cui J; Tong R; Li Q
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures.
    Vandebroek L; Van den Schoor F; Verplaetsen F; Berghmans J; Winter H; van't Oost E
    J Hazard Mater; 2005 Apr; 120(1-3):57-65. PubMed ID: 15811665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignition.
    Liberman M; Kleeorin N; Rogachevskii I; Haugen NEL
    Phys Rev E; 2017 May; 95(5-1):051101. PubMed ID: 28618553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of the Suppression of Methane Explosions by N
    Chen X; Zhao T; Cheng F; Lu K; Shi X; Yu W
    ACS Omega; 2023 Mar; 8(12):10863-10874. PubMed ID: 37008097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental determination of self-heating and self-ignition risks associated with the dusts of agricultural materials commonly stored in silos.
    Ramírez A; García-Torrent J; Tascón A
    J Hazard Mater; 2010 Mar; 175(1-3):920-7. PubMed ID: 19944529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Relationship between the ultrastructural characteristic of coal dust and its toxicity].
    Gao J; Cui J; Tian Y; Zhang Y
    Wei Sheng Yan Jiu; 2000 Jul; 29(4):209-10, 220. PubMed ID: 12520919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parametric transition from deflagration to detonation in stellar medium.
    Gordon PV; Kagan L; Sivashinsky G
    Phys Rev E; 2021 Mar; 103(3-1):033106. PubMed ID: 33862820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies on the effect of quartz, bentonite and coal dust mixtures on macrophages in vitro.
    Adamis Z; Timár M
    Br J Exp Pathol; 1978 Aug; 59(4):411-5. PubMed ID: 213094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Computational Fluid Dynamic Investigation of Inhomogeneous Hydrogen Flame Acceleration and Transition to Detonation.
    Khodadadi Azadboni R; Heidari A; Wen JX
    Flow Turbul Combust; 2018; 101(4):1009-1021. PubMed ID: 30613185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental study on properties of methane diffusion of coal block under triaxial compressive stress.
    Zhao HB
    ScientificWorldJournal; 2014; 2014():385039. PubMed ID: 25531000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.