BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28582861)

  • 21. Oxidative post-translational modifications of cysteine residues in plant signal transduction.
    Waszczak C; Akter S; Jacques S; Huang J; Messens J; Van Breusegem F
    J Exp Bot; 2015 May; 66(10):2923-34. PubMed ID: 25750423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex I function in mitochondrial supercomplexes.
    Lenaz G; Tioli G; Falasca AI; Genova ML
    Biochim Biophys Acta; 2016 Jul; 1857(7):991-1000. PubMed ID: 26820434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding mitochondrial complex I assembly in health and disease.
    Mimaki M; Wang X; McKenzie M; Thorburn DR; Ryan MT
    Biochim Biophys Acta; 2012 Jun; 1817(6):851-62. PubMed ID: 21924235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension.
    Chan SH; Wu KL; Chang AY; Tai MH; Chan JY
    Hypertension; 2009 Feb; 53(2):217-27. PubMed ID: 19114648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial Complex I: structure, function, and implications in neurodegeneration.
    Lenaz G; Baracca A; Fato R; Genova ML; Solaini G
    Ital J Biochem; 2006; 55(3-4):232-53. PubMed ID: 17274529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution, structure and membrane association of NDUFAF6, an assembly factor for NADH:ubiquinone oxidoreductase (Complex I).
    Lemire BD
    Mitochondrion; 2017 Jul; 35():13-22. PubMed ID: 28476317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure.
    Hoshino A; Okawa Y; Ariyoshi M; Kaimoto S; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Circ Heart Fail; 2014 May; 7(3):500-9. PubMed ID: 24740269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation.
    Koopman WJ; Nijtmans LG; Dieteren CE; Roestenberg P; Valsecchi F; Smeitink JA; Willems PH
    Antioxid Redox Signal; 2010 Jun; 12(12):1431-70. PubMed ID: 19803744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis.
    Grad LI; Lemire BD
    Hum Mol Genet; 2004 Feb; 13(3):303-14. PubMed ID: 14662656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications.
    Song BJ; Akbar M; Abdelmegeed MA; Byun K; Lee B; Yoon SK; Hardwick JP
    Redox Biol; 2014; 3():109-23. PubMed ID: 25465468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I.
    De Rasmo D; Signorile A; Larizza M; Pacelli C; Cocco T; Papa S
    Free Radic Biol Med; 2012 Feb; 52(4):757-64. PubMed ID: 22198267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease.
    Distelmaier F; Koopman WJ; van den Heuvel LP; Rodenburg RJ; Mayatepek E; Willems PH; Smeitink JA
    Brain; 2009 Apr; 132(Pt 4):833-42. PubMed ID: 19336460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolated mitochondrial complex I deficiency: explorative data analysis of patient cell parameters.
    Blanchet L; Buydens MC; Smeitink JA; Willems PH; Koopman WJ
    Curr Pharm Des; 2011 Dec; 17(36):4023-33. PubMed ID: 22188452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage.
    Manczak M; Park BS; Jung Y; Reddy PH
    Neuromolecular Med; 2004; 5(2):147-62. PubMed ID: 15075441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A; Hanisch FG
    J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress.
    Murray J; Oquendo CE; Willis JH; Marusich MF; Capaldi RA
    Adv Drug Deliv Rev; 2008; 60(13-14):1497-503. PubMed ID: 18647628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.