These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28582886)

  • 1. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness.
    Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G
    Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
    Riani A; Madani T; Hadri AE; Benallegue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
    Jin X; Prado A; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):847-855. PubMed ID: 29641389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and preliminary assessment of Vanderbilt hand exoskeleton.
    Gasser BW; Bennett DA; Durrough CM; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1537-1542. PubMed ID: 28814038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation-based design optimization of a wrist exoskeleton.
    Khan JS; Mohammadi M; Rasmussen J; Andreasen Struijk LNS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint.
    Keemink AQL; van Oort G; Wessels M; Stienen AHA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):817-829. PubMed ID: 29641386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation.
    VĂ©lez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human movement training with a cable driven ARm EXoskeleton (CAREX).
    Mao Y; Jin X; Gera Dutta G; Scholz JP; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):84-92. PubMed ID: 24919202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-Planar Trajectory Tracking with a Novel 3DOF Cable Driven Lower Limb Rehabilitation Exoskeleton (C-LREX).
    Prasad R; El-Rich M; Awad MI; Agrawal SK; Khalaf K
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.