These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28582966)

  • 1. Polarization-Dependent Quasi-Far-Field Superfocusing Strategy of Nanoring-Based Plasmonic Lenses.
    Sun H; Zhu Y; Gao B; Wang P; Yu Y
    Nanoscale Res Lett; 2017 Dec; 12(1):386. PubMed ID: 28582966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci.
    Li M; Li W; Li H; Zhu Y; Yu Y
    Sci Rep; 2017 May; 7(1):1335. PubMed ID: 28465580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic planar lens constructed by double-turn waveguides for sub-diffraction-limit focusing.
    Qi K; Zhu Y; Sun H; Yu Y
    Opt Express; 2017 Sep; 25(18):21191-21200. PubMed ID: 29041525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses.
    Zhu Y; Yuan W; Sun H; Yu Y
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28805680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on Super-Resolution Focusing Performance of a TE-Polarized Nanoslit-Based Two-Dimensional Lens.
    Zhu Y; Zhou S; Wang Z; Yu Y; Yuan W; Liu W
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-light metalens far-field nanofocusing effects with active tuning of focus based on MIM subwavelength structures used in an integrated imaging array.
    Meng Y; Lyu Y; Yu Z; Chen LL; Liao H
    Appl Opt; 2022 Feb; 61(5):B339-B344. PubMed ID: 35201157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient modulation of subwavelength focusing via meta-aperture-based plasmonic lens for multifunction applications.
    Chang KH; Chen YC; Chang WH; Lee PT
    Sci Rep; 2018 Sep; 8(1):13648. PubMed ID: 30206269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field behavior of zone-plate-like plasmonic nanostructures.
    Fu Y; Zhou W; Lim LE
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jan; 25(1):238-49. PubMed ID: 18157232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses.
    Huang F; Jiang X; Yuan H; Yang H; Li S; Sun X
    Opt Lett; 2016 Apr; 41(7):1684-7. PubMed ID: 27192318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens.
    Chen H; Wu Z; Li Z; Luo Z; Jiang X; Wen Z; Zhu L; Zhou X; Li H; Shang Z; Zhang Z; Zhang K; Liang G; Jiang S; Du L; Chen G
    Opt Express; 2018 Nov; 26(23):29817-29825. PubMed ID: 30469940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far field superfocusing along with enhanced near field emission from hybrid spiral plasmonic lens inscribed with nano corrals slit diffractor.
    Jain P; Maiti T
    Sci Rep; 2018 Jan; 8(1):1127. PubMed ID: 29348687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field focusing properties of zone plates in visible regime--new insights.
    Mote RG; Yu SF; Ng BK; Zhou W; Lau SP
    Opt Express; 2008 Jun; 16(13):9554-64. PubMed ID: 18575522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TE-polarized design for metallic slit lenses: a way to deep-subwavelength focusing over a broad wavelength range.
    Zhu Y; Yuan W; Li W; Sun H; Qi K; Yu Y
    Opt Lett; 2018 Jan; 43(2):206-209. PubMed ID: 29328239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.
    Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG
    Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing.
    Tang D; Chen L; Liu J
    Opt Express; 2019 Apr; 27(9):12308-12316. PubMed ID: 31052773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review.
    Wang C; Zhang W; Zhao Z; Wang Y; Gao P; Luo Y; Luo X
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization controllable plasmonic focusing based on nanometer holes.
    Lu X; Zeng X; Lv H; Han Y; Mou Z; Liu C; Wang S; Teng S
    Nanotechnology; 2020 Mar; 31(13):135201. PubMed ID: 31846940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle.
    Li Z; Wang C; Wang Y; Lu X; Guo Y; Li X; Ma X; Pu M; Luo X
    Opt Express; 2021 Mar; 29(7):9991-9999. PubMed ID: 33820160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-diffraction-limit light sheet enabled by a super-oscillatory lens with an enlarged field of view and depth of focus.
    He P; Li W; An C; Sun X; Yuan W; Yu Y
    Opt Lett; 2022 Jul; 47(13):3267-3270. PubMed ID: 35776602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna.
    Mao L; Ren Y; Lu Y; Lei X; Jiang K; Li K; Wang Y; Cui C; Wen X; Wang P
    Sci Rep; 2016 Mar; 6():23751. PubMed ID: 27009383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.