These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28582969)

  • 1. Batch Fabrication of Broadband Metallic Planar Microlenses and Their Arrays Combining Nanosphere Self-Assembly with Conventional Photolithography.
    Wang P; Yu X; Zhu Y; Yu Y; Yuan W
    Nanoscale Res Lett; 2017 Dec; 12(1):388. PubMed ID: 28582969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Metallic Planar Microlenses in an Array: the Focusing Coupling Effect.
    Yu Y; Wang P; Zhu Y; Diao J
    Nanoscale Res Lett; 2016 Dec; 11(1):109. PubMed ID: 26922796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.
    Liu J; Chen C; Yang G; Chen Y; Yang CF
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography.
    Hall AS; Friesen SA; Mallouk TE
    Nano Lett; 2013 Jun; 13(6):2623-7. PubMed ID: 23614608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Linear Regression Modeling of Nanosphere Self-Assembly
    Razaulla T; Bekeris M; Feng H; Beeman M; Nze U; Warren R
    Langmuir; 2021 Oct; 37(42):12419-12428. PubMed ID: 34644078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off.
    Huang X; Ratchford D; Pehrsson PE; Yeom J
    Nanotechnology; 2016 Sep; 27(39):395302. PubMed ID: 27559986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband plasmonic microlenses based on patches of nanoholes.
    Gao H; Hyun JK; Lee MH; Yang JC; Lauhon LJ; Odom TW
    Nano Lett; 2010 Oct; 10(10):4111-6. PubMed ID: 20839781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in the fabrication of ordered nanostructure arrays based on nanosphere lithography.
    Wei X
    Recent Pat Nanotechnol; 2010 Nov; 4(3):194-204. PubMed ID: 20670212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography.
    Gonidec M; Hamedi MM; Nemiroski A; Rubio LM; Torres C; Whitesides GM
    Nano Lett; 2016 Jul; 16(7):4125-32. PubMed ID: 27244272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoirĂ© Nanosphere Lithography.
    Chen K; Rajeeva BB; Wu Z; Rukavina M; Dao TD; Ishii S; Aono M; Nagao T; Zheng Y
    ACS Nano; 2015 Jun; 9(6):6031-40. PubMed ID: 26022616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography.
    Weekes SM; Ogrin FY; Murray WA
    Langmuir; 2004 Dec; 20(25):11208-12. PubMed ID: 15568877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography.
    Li L; Fang Y; Xu C; Zhao Y; Wu K; Limburg C; Jiang P; Ziegler KJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7368-7375. PubMed ID: 28067037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution nanosphere lithography (NSL) to fabricate highly-ordered ZnO nanorod arrays.
    Zhang X; Zhang L; Gao M; Zhou W; Xie S
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7432-5. PubMed ID: 21137952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography.
    Chen Z; Yuan H; Wu P; Zhang W; Juodkazis S; Huang H; Cao X
    Opt Lett; 2022 Jan; 47(1):22-25. PubMed ID: 34951873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-bridged nanosphere lithography.
    Luo L; Akinoglu EM; Wu L; Dodge T; Wang X; Zhou G; Naughton MJ; Kempa K; Giersig M
    Nanotechnology; 2020 Mar; 31(24):245302. PubMed ID: 32126530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two step process for the fabrication of diffraction limited concave microlens arrays.
    Ruffieux P; Scharf T; Philipoussis I; Herzig HP; Voelkel R; Weible KJ
    Opt Express; 2008 Nov; 16(24):19541-9. PubMed ID: 19030040
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.