BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28583118)

  • 1. Single-cell study links metabolism with nutrient signaling and reveals sources of variability.
    Welkenhuysen N; Borgqvist J; Backman M; Bendrioua L; Goksör M; Adiels CB; Cvijovic M; Hohmann S
    BMC Syst Biol; 2017 Jun; 11(1):59. PubMed ID: 28583118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.
    García-Salcedo R; Lubitz T; Beltran G; Elbing K; Tian Y; Frey S; Wolkenhauer O; Krantz M; Klipp E; Hohmann S
    FEBS J; 2014 Apr; 281(7):1901-17. PubMed ID: 24529170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels.
    Bendrioua L; Smedh M; Almquist J; Cvijovic M; Jirstrand M; Goksör M; Adiels CB; Hohmann S
    J Biol Chem; 2014 May; 289(18):12863-75. PubMed ID: 24627493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases.
    Schmidt GW; Welkenhuysen N; Ye T; Cvijovic M; Hohmann S
    Mol Genet Genomics; 2020 Nov; 295(6):1489-1500. PubMed ID: 32948893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.
    Ahuatzi D; Riera A; Pela Ez R; Herrero P; Moreno F
    J Biol Chem; 2007 Feb; 282(7):4485-4493. PubMed ID: 17178716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA; Kuchin S; Carlson M
    Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.
    Yao Y; Tsuchiyama S; Yang C; Bulteau AL; He C; Robison B; Tsuchiya M; Miller D; Briones V; Tar K; Potrero A; Friguet B; Kennedy BK; Schmidt M
    PLoS Genet; 2015 Jan; 11(1):e1004968. PubMed ID: 25629410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms.
    Shashkova S; Wollman AJM; Leake MC; Hohmann S
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG; Carlson M
    Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.
    Karunanithi S; Cullen PJ
    Genetics; 2012 Nov; 192(3):869-87. PubMed ID: 22904036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3.
    O'Donnell AF; McCartney RR; Chandrashekarappa DG; Zhang BB; Thorner J; Schmidt MC
    Mol Cell Biol; 2015 Mar; 35(6):939-55. PubMed ID: 25547292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae.
    Elbing K; Ståhlberg A; Hohmann S; Gustafsson L
    Eur J Biochem; 2004 Dec; 271(23-24):4855-64. PubMed ID: 15606773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose repression in yeast.
    Carlson M
    Curr Opin Microbiol; 1999 Apr; 2(2):202-7. PubMed ID: 10322167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches.
    Braam S; Tripodi F; Österberg L; Persson S; Welkenhuysen N; Coccetti P; Cvijovic M
    Microb Cell; 2024; 11():143-154. PubMed ID: 38756204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1.
    Cziferszky A; Seiboth B; Kubicek CP
    Fungal Genet Biol; 2003 Nov; 40(2):166-75. PubMed ID: 14516769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits.
    Daniel T; Carling D
    Biochem J; 2002 Aug; 365(Pt 3):629-38. PubMed ID: 11971761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex.
    Vega M; Riera A; Fernández-Cid A; Herrero P; Moreno F
    J Biol Chem; 2016 Apr; 291(14):7267-85. PubMed ID: 26865637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.