BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28583118)

  • 21. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase.
    Rubenstein EM; McCartney RR; Zhang C; Shokat KM; Shirra MK; Arndt KM; Schmidt MC
    J Biol Chem; 2008 Jan; 283(1):222-230. PubMed ID: 17991748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.
    Kaniak A; Xue Z; Macool D; Kim JH; Johnston M
    Eukaryot Cell; 2004 Feb; 3(1):221-31. PubMed ID: 14871952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism.
    Vincent O; Townley R; Kuchin S; Carlson M
    Genes Dev; 2001 May; 15(9):1104-14. PubMed ID: 11331606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.
    Almquist J; Bendrioua L; Adiels CB; Goksör M; Hohmann S; Jirstrand M
    PLoS One; 2015; 10(4):e0124050. PubMed ID: 25893847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene.
    Tomás-Cobos L; Sanz P
    Biochem J; 2002 Dec; 368(Pt 2):657-63. PubMed ID: 12220226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in
    Ramírez-Zavala B; Mottola A; Krüger I; Morschhäuser J
    mSphere; 2021 Dec; 6(6):e0092921. PubMed ID: 34908458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of glucose utilization in yeast.
    Carlson M
    Curr Opin Genet Dev; 1998 Oct; 8(5):560-4. PubMed ID: 9794821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D; Herrero P; de la Cera T; Moreno F
    J Biol Chem; 2004 Apr; 279(14):14440-6. PubMed ID: 14715653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mathematical analysis of nuclear intensity dynamics for Mig1-GFP under consideration of bleaching effects and background noise in Saccharomyces cerevisiae.
    Frey S; Sott K; Smedh M; Millat T; Dahl P; Wolkenhauer O; Goksör M
    Mol Biosyst; 2011 Jan; 7(1):215-23. PubMed ID: 20967382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple phosphorylation sites regulate the activity of the repressor Mig1 in
    Ramírez-Zavala B; Betsova D; Schwanfelder S; Krüger I; Mottola A; Krüger T; Kniemeyer O; Brakhage AA; Morschhäuser J
    mSphere; 2023 Dec; 8(6):e0054623. PubMed ID: 38010000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular communication: crosstalk between the Snf1 and other signaling pathways.
    Shashkova S; Welkenhuysen N; Hohmann S
    FEMS Yeast Res; 2015 Jun; 15(4):fov026. PubMed ID: 25994786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation.
    Friis RMN; Schultz MC
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2563-2575. PubMed ID: 27478089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human pancreatic beta-cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell.
    Riera A; Ahuatzi D; Herrero P; Garcia-Gimeno MA; Sanz P; Moreno F
    Biochem J; 2008 Oct; 415(2):233-9. PubMed ID: 18588509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional domains in the Mig1 repressor.
    Ostling J; Carlberg M; Ronne H
    Mol Cell Biol; 1996 Mar; 16(3):753-61. PubMed ID: 8622676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose sensing through the Hxk2-dependent signalling pathway.
    Moreno F; Ahuatzi D; Riera A; Palomino CA; Herrero P
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):265-8. PubMed ID: 15667322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling of glucose repression signalling in yeast Saccharomyces cerevisiae.
    Persson S; Shashkova S; Österberg L; Cvijovic M
    FEMS Yeast Res; 2022 Mar; 22(1):. PubMed ID: 35238938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.