These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 28583196)

  • 1. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals.
    Liu J; Kim HB; Wolf SL; Kesar TM
    Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):211-220. PubMed ID: 32347399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immediate improvements in post-stroke gait biomechanics are induced with both real-time limb position and propulsive force biofeedback.
    Santucci V; Alam Z; Liu J; Spencer J; Faust A; Cobb A; Konantz J; Eicholtz S; Wolf S; Kesar TM
    J Neuroeng Rehabil; 2023 Mar; 20(1):37. PubMed ID: 37004111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics.
    Liu J; Santucci V; Eicholtz S; Kesar TM
    Gait Posture; 2021 Jan; 83():107-113. PubMed ID: 33129170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.
    Hinton EH; Buffum R; Kingston D; Stergiou N; Kesar T; Bierner S; Knarr BA
    Ann Biomed Eng; 2024 Feb; 52(2):355-363. PubMed ID: 37870663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol.
    Begg R; Galea MP; James L; Sparrow WAT; Levinger P; Khan F; Said CM
    Trials; 2019 May; 20(1):317. PubMed ID: 31151480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed.
    Pariser KM; Donlin MC; Downer KE; Higginson JS
    J Biomech; 2022 Mar; 133():110971. PubMed ID: 35121382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Treadmill Training with Visual Biofeedback on Selected Gait Parameters in Subacute Hemiparetic Stroke Patients.
    Kaźmierczak K; Wareńczak-Pawlicka A; Miedzyblocki M; Lisiński P
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2353-2360. PubMed ID: 31675335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of therapeutic gait training using a prosthesis and a treadmill for ambulatory patients with hemiparesis.
    Hase K; Suzuki E; Matsumoto M; Fujiwara T; Liu M
    Arch Phys Med Rehabil; 2011 Dec; 92(12):1961-6. PubMed ID: 22133242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking speed changes in response to user-driven treadmill control after stroke.
    Ray NT; Reisman DS; Higginson JS
    J Biomech; 2020 Mar; 101():109643. PubMed ID: 31983402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.