These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Garner C; Slatkin M Genet Epidemiol; 2003 Jan; 24(1):57-67. PubMed ID: 12508256 [TBL] [Abstract][Full Text] [Related]
24. Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies. Bolormaa S; Pryce JE; Kemper KE; Hayes BJ; Zhang Y; Tier B; Barendse W; Reverter A; Goddard ME Genet Sel Evol; 2013 Oct; 45(1):43. PubMed ID: 24168700 [TBL] [Abstract][Full Text] [Related]
26. On the Relationship Between High-Order Linkage Disequilibrium and Epistasis. Zan Y; Forsberg SKG; Carlborg Ö G3 (Bethesda); 2018 Jul; 8(8):2817-2824. PubMed ID: 29945968 [TBL] [Abstract][Full Text] [Related]
27. Equivalence of single- and multilocus markers: power to detect linkage with composite markers derived from biallelic loci. Wilson AF; Sorant AJ Am J Hum Genet; 2000 May; 66(5):1610-5. PubMed ID: 10762546 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide analysis of zygotic linkage disequilibrium and its components in crossbred cattle. Jiang Q; Wang Z; Moore SS; Yang RC BMC Genet; 2012 Jul; 13():65. PubMed ID: 22827586 [TBL] [Abstract][Full Text] [Related]
30. Genetic architecture of regulatory variation in Arabidopsis thaliana. Zhang X; Cal AJ; Borevitz JO Genome Res; 2011 May; 21(5):725-33. PubMed ID: 21467266 [TBL] [Abstract][Full Text] [Related]
31. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. Negro SS; Millet EJ; Madur D; Bauland C; Combes V; Welcker C; Tardieu F; Charcosset A; Nicolas SD BMC Plant Biol; 2019 Jul; 19(1):318. PubMed ID: 31311506 [TBL] [Abstract][Full Text] [Related]
32. High density linkage disequilibrium maps of chromosome 14 in Holstein and Angus cattle. Marques E; Schnabel RD; Stothard P; Kolbehdari D; Wang Z; Taylor JF; Moore SS BMC Genet; 2008 Jul; 9():45. PubMed ID: 18611270 [TBL] [Abstract][Full Text] [Related]
34. The expected power of genome-wide linkage disequilibrium testing using single nucleotide polymorphism markers for detecting a low-frequency disease variant. Ohashi J; Tokunaga K Ann Hum Genet; 2002 Jul; 66(Pt 4):297-306. PubMed ID: 12418970 [TBL] [Abstract][Full Text] [Related]
35. Single-marker and two-marker association tests for unphased case-control genotype data, with a power comparison. Kim S; Morris NJ; Won S; Elston RC Genet Epidemiol; 2010 Jan; 34(1):67-77. PubMed ID: 19557751 [TBL] [Abstract][Full Text] [Related]
36. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping. Liu F; Schmidt RH; Reif JC; Jiang Y G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers. Wang J; Zhao X; Wang W; Qu Y; Teng W; Qiu L; Zheng H; Han Y; Li W Mol Genet Genomics; 2019 Jun; 294(3):607-620. PubMed ID: 30739204 [TBL] [Abstract][Full Text] [Related]
38. Identification of quantitative trait loci underlying milk traits in Spanish dairy sheep using linkage plus combined linkage disequilibrium and linkage analysis approaches. Garcia-Gámez E; Gutiérrez-Gil B; Suarez-Vega A; de la Fuente LF; Arranz JJ J Dairy Sci; 2013 Sep; 96(9):6059-69. PubMed ID: 23810588 [TBL] [Abstract][Full Text] [Related]