These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28583237)

  • 21. In vitro pulp chamber temperature rise during composite resin polymerization with different curing lights.
    Singh A; Mohan B; Lakshminarayanan L
    Indian J Dent Res; 2005; 16(3):92-8. PubMed ID: 16454322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of cavity preparation, light-curing units, and composite filling on intrapulpal temperature increase in an in vitro tooth model.
    Choi SH; Roulet JF; Heintze SD; Park SH
    Oper Dent; 2014; 39(5):E195-205. PubMed ID: 24720262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatio-temporal temperature fields generated coronally with bulk-fill resin composites: A thermography study.
    Yang J; Algamaiah H; Watts DC
    Dent Mater; 2021 Aug; 37(8):1237-1247. PubMed ID: 34144795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal emission and curing efficiency of LED and halogen curing lights.
    Vandewalle KS; Roberts HW; Tiba A; Charlton DG
    Oper Dent; 2005; 30(2):257-64. PubMed ID: 15853113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro.
    Yazici AR; Müftü A; Kugel G; Perry RD
    Oper Dent; 2006; 31(2):261-5. PubMed ID: 16827031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of different modes of light curing and resin composites on microleakage of Class II restorations--Part II.
    Hardan LS; Amm EW; Ghayad A; Ghosn C; Khraisat A
    Odontostomatol Trop; 2009 Jun; 32(126):29-37. PubMed ID: 20069964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources.
    Hannig M; Bott B
    Dent Mater; 1999 Jul; 15(4):275-81. PubMed ID: 10551096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature rise during adhesive and composite polymerization with different light-curing sources.
    Pereira Da Silva A; Alves Da Cunha L; Pagani C; De Mello Rode S
    Minerva Stomatol; 2010 May; 59(5):253-8. PubMed ID: 20502430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal risks from LED- and high-intensity QTH-curing units during polymerization of dental resins.
    Bouillaguet S; Caillot G; Forchelet J; Cattani-Lorente M; Wataha JC; Krejci I
    J Biomed Mater Res B Appl Biomater; 2005 Feb; 72(2):260-7. PubMed ID: 15455367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrapulpal heat generation during provisionalization: effect of desensitizer and matrix type.
    Akova T; Ozkomur A; Dundar C; Aytutuldu N
    J Prosthodont; 2008 Feb; 17(2):108-113. PubMed ID: 17971113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of bulk/incremental fill on internal gap formation of bulk-fill composites.
    Furness A; Tadros MY; Looney SW; Rueggeberg FA
    J Dent; 2014 Apr; 42(4):439-49. PubMed ID: 24480086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of flowable materials on the microleakage of Class II composite restorations that extend apical to the cemento-enamel junction.
    Sadeghi M; Lynch CD
    Oper Dent; 2009; 34(3):306-11. PubMed ID: 19544820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-Time Analysis of Temperature Changes in Composite Increments and Pulp Chamber during Photopolymerization.
    Kim RJ; Lee IB; Yoo JY; Park SJ; Kim SY; Yi YA; Hwang JY; Seo DG
    Biomed Res Int; 2015; 2015():923808. PubMed ID: 26557716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro study of microleakage of occlusal composite restorations polymerized by a conventional curing light and a PAC curing light.
    Stritikus J; Owens B
    J Clin Pediatr Dent; 2000; 24(3):221-7. PubMed ID: 11314147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise.
    Randolph LD; Palin WM; Watts DC; Genet M; Devaux J; Leloup G; Leprince JG
    Dent Mater; 2014 Nov; 30(11):1280-9. PubMed ID: 25261362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature rise in the pulp chamber induced by a conventional halogen light-curing source and a plasma arc lamp.
    Danesh G; Davids H; Duda S; Kaup M; Ott K; Schäfer E
    Am J Dent; 2004 Jun; 17(3):203-8. PubMed ID: 15301219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of new innovative restorative carbomised glass cement on intrapulpal temperature rise: an ex-vivo study.
    Botsali MS; Tokay U; Ozmen B; Cortcu M; Koyuturk AE; Kahvecioglu F
    Braz Oral Res; 2016 May; 30(1):. PubMed ID: 27253144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material.
    McHugh LEJ; Politi I; Al-Fodeh RS; Fleming GJP
    Dent Mater; 2017 Sep; 33(9):e329-e335. PubMed ID: 28688735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-vitro assessment of temperature rise in the pulp during orthodontic bonding.
    Malkoç S; Uysal T; Uşümez S; Işman E; Baysal A
    Am J Orthod Dentofacial Orthop; 2010 Mar; 137(3):379-83. PubMed ID: 20197176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes.
    Ramoglu SI; Karamehmetoglu H; Sari T; Usumez S
    Angle Orthod; 2015 May; 85(3):381-5. PubMed ID: 25317750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.