These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28583405)

  • 1. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.
    Sarkar O; Venkata Mohan S
    Bioresour Technol; 2017 Oct; 242():68-76. PubMed ID: 28583405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash.
    Pasupuleti SB; Venkata Mohan S
    Bioresour Technol; 2015; 189():177-185. PubMed ID: 25889805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical factors influence on acidogenesis towards volatile fatty acid, biohydrogen and methane production from the molasses-spent wash.
    Vanitha TK; Dahiya S; Lingam Y; Venkata Mohan S
    Bioresour Technol; 2022 Sep; 360():127446. PubMed ID: 35690240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
    Cheah YK; Dosta J; Mata-Álvarez J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production.
    Hussain A; Filiatrault M; Guiot SR
    Bioresour Technol; 2017 Dec; 245(Pt A):1-9. PubMed ID: 28892677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation.
    Khardenavis AA; Wang JY; Ng WJ; Purohit HJ
    Environ Technol; 2013; 34(13-16):2085-97. PubMed ID: 24350462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load.
    Goud RK; Sarkar O; Chiranjeevi P; Venkata Mohan S
    Bioresour Technol; 2014 Aug; 165():223-32. PubMed ID: 24751375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Hydrogen-Compressed natural gas (bio-H-CNG) production from food waste: Organic load influence on hydrogen and methane fusion.
    Santhosh J; Sarkar O; Venkata Mohan S
    Bioresour Technol; 2021 Nov; 340():125643. PubMed ID: 34375791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of anoxic microenvironment and facultative anaerobes on acidogenic metabolism in a self-induced electrofermentation system.
    Sarkar O; Venkata Mohan S
    Bioresour Technol; 2020 Oct; 313():123604. PubMed ID: 32540693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic and acidogenic fermentation potential of food waste with source segregated feces-without-urine as co-substrate.
    Rajagopal R; Ahamed A; Wang JY
    Bioresour Technol; 2014 Sep; 167():564-8. PubMed ID: 25022801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste.
    Xu S; Selvam A; Wong JW
    Waste Manag; 2014 Feb; 34(2):363-9. PubMed ID: 24290969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up.
    Sarkar O; Rova U; Christakopoulos P; Matsakas L
    Bioresour Technol; 2021 Jan; 319():124233. PubMed ID: 33254458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components.
    Soomro AF; Abbasi IA; Ni Z; Ying L; Liu J
    Bioresour Technol; 2020 May; 304():122980. PubMed ID: 32062392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format.
    Naresh Kumar A; Min B; Venkata Mohan S
    Bioresour Technol; 2018 Dec; 269():408-416. PubMed ID: 30212764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.
    Rincón B; Borja R; Martín MA; Martín A
    Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of acidogenic fermentation for volatile fatty acid production from protein-rich substrate in food waste.
    Yu X; Yin J; Shen D; Shentu J; Long Y; Chen T
    Waste Manag; 2018 Apr; 74():177-184. PubMed ID: 29208532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Methane Production from Food Waste Using Cysteine To Increase Biotransformation of l-Monosaccharide, Volatile Fatty Acids, and Biohydrogen.
    Liu H; Chen Y
    Environ Sci Technol; 2018 Mar; 52(6):3777-3785. PubMed ID: 29465997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.