BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 28583830)

  • 1. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
    Rice A; Wereszczynski J
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Spacer Length Modification of the Cationic Side Chain on the Energetics of Antimicrobial Peptide Binding to Membrane-Mimetic Bilayers.
    Ghosh S; Chatterjee S; Satpati P
    J Chem Inf Model; 2023 Sep; 63(18):5823-5833. PubMed ID: 37684221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity.
    Castelletto V; Barnes RH; Karatzas KA; Edwards-Gayle CJC; Greco F; Hamley IW; Rambo R; Seitsonen J; Ruokolainen J
    Biomacromolecules; 2018 Jul; 19(7):2782-2794. PubMed ID: 29738229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation.
    Khandelia H; Kaznessis YN
    Biochim Biophys Acta; 2007 Mar; 1768(3):509-20. PubMed ID: 17254546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: hydrogen bonding properties govern its membrane-disruptive activities.
    Nguyen LT; de Boer L; Zaat SA; Vogel HJ
    Biochim Biophys Acta; 2011 Sep; 1808(9):2297-303. PubMed ID: 21641334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning.
    Bonucci A; Balducci E; Martinelli M; Pogni R
    Biophys Chem; 2014 Jun; 190-191():32-40. PubMed ID: 24820901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides.
    Luong HX; Kim DH; Lee BJ; Kim YW
    Arch Pharm Res; 2018 Nov; 41(11):1092-1097. PubMed ID: 30361948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Cationic Side Chains in the Antimicrobial Activity of C18G.
    Kohn EM; Shirley DJ; Arotsky L; Picciano AM; Ridgway Z; Urban MW; Carone BR; Caputo GA
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29401708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A look at arginine in membranes.
    Hristova K; Wimley WC
    J Membr Biol; 2011 Jan; 239(1-2):49-56. PubMed ID: 21107547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of an antimicrobial peptide with a model lipid bilayer using molecular dynamics simulation.
    Soliman W; Bhattacharjee S; Kaur K
    Langmuir; 2009 Jun; 25(12):6591-5. PubMed ID: 19505152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural effects of tachyplesin I and its linear derivative on their aggregation and mobility in lipid bilayers.
    Han E; Lee H
    J Mol Graph Model; 2015 Jun; 59():123-8. PubMed ID: 25978805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations.
    Shepherd CM; Vogel HJ; Tieleman DP
    Biochem J; 2003 Feb; 370(Pt 1):233-43. PubMed ID: 12423203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The different interactions of lysine and arginine side chains with lipid membranes.
    Li L; Vorobyov I; Allen TW
    J Phys Chem B; 2013 Oct; 117(40):11906-20. PubMed ID: 24007457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.