BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28584090)

  • 1. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins.
    Thompson JR; Erkenbrack EM; Hinman VF; McCauley BS; Petsios E; Bottjer DJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5870-5877. PubMed ID: 28584090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
    Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T
    Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.
    Erkenbrack EM; Davidson EH
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L
    Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
    Gao F; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6091-6. PubMed ID: 18413604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global regulatory logic for specification of an embryonic cell lineage.
    Oliveri P; Tu Q; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5955-62. PubMed ID: 18413610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid.
    Thompson JR; Petsios E; Davidson EH; Erkenbrack EM; Gao F; Bottjer DJ
    Sci Rep; 2015 Oct; 5():15541. PubMed ID: 26486232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Echinoderm development and evolution in the post-genomic era.
    Cary GA; Hinman VF
    Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins.
    Erkenbrack EM; Petsios E
    J Exp Zool B Mol Dev Evol; 2017 Jul; 328(5):423-432. PubMed ID: 28544452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paleogenomics of echinoderms.
    Bottjer DJ; Davidson EH; Peterson KJ; Cameron RA
    Science; 2006 Nov; 314(5801):956-60. PubMed ID: 17095693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yamazaki A; Morino Y; Urata M; Yamaguchi M; Minokawa T; Furukawa R; Kondo M; Wada H
    Development; 2020 Feb; 147(4):. PubMed ID: 32001441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record.
    Mongiardino Koch N; Thompson JR; Hiley AS; McCowin MF; Armstrong AF; Coppard SE; Aguilera F; Bronstein O; Kroh A; Mooi R; Rouse GW
    Elife; 2022 Mar; 11():. PubMed ID: 35315317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.