These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28584099)

  • 1. Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development.
    Cary GA; Cheatle Jarvela AM; Francolini RD; Hinman VF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5854-5861. PubMed ID: 28584099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks.
    Cheatle Jarvela AM; Brubaker L; Vedenko A; Gupta A; Armitage BA; Bulyk ML; Hinman VF
    Mol Biol Evol; 2014 Oct; 31(10):2672-88. PubMed ID: 25016582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
    Hinman VF; Yankura KA; McCauley BS
    Biochim Biophys Acta; 2009 Apr; 1789(4):326-32. PubMed ID: 19284985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echinoderm systems for gene regulatory studies in evolution and development.
    Arnone MI; Andrikou C; Annunziata R
    Curr Opin Genet Dev; 2016 Aug; 39():129-137. PubMed ID: 27389072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics approaches to study gene regulatory networks for development in echinoderms.
    Lowe EK; Cuomo C; Arnone MI
    Brief Funct Genomics; 2017 Sep; 16(5):299-308. PubMed ID: 28957458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echinoderm development and evolution in the post-genomic era.
    Cary GA; Hinman VF
    Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary plasticity of developmental gene regulatory network architecture.
    Hinman VF; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19404-9. PubMed ID: 18042699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L
    Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity.
    Lowe EK; Cuomo C; Voronov D; Arnone MI
    Methods Cell Biol; 2019; 151():115-126. PubMed ID: 30948003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    Ettensohn CA
    Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm.
    Andrikou C; Pai CY; Su YH; Arnone MI
    Elife; 2015 Jul; 4():. PubMed ID: 26218224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate.
    Levin N; Yamakawa S; Morino Y; Wada H
    Curr Top Dev Biol; 2022; 146():1-24. PubMed ID: 35152980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.