BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 28584165)

  • 21. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes.
    Shan H; Zhang N; Liu C; Xu G; Zhang J; Chen Z; Kong H
    Mol Phylogenet Evol; 2007 Jul; 44(1):26-41. PubMed ID: 17434760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary complexity of MADS complexes.
    Rijpkema AS; Gerats T; Vandenbussche M
    Curr Opin Plant Biol; 2007 Feb; 10(1):32-8. PubMed ID: 17140839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of MIKCC-type MADS box genes in grapevine.
    Díaz-Riquelme J; Lijavetzky D; Martínez-Zapater JM; Carmona MJ
    Plant Physiol; 2009 Jan; 149(1):354-69. PubMed ID: 18997115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.
    Alvarez-Buylla ER; Pelaz S; Liljegren SJ; Gold SE; Burgeff C; Ditta GS; Ribas de Pouplana L; Martínez-Castilla L; Yanofsky MF
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5328-33. PubMed ID: 10805792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antiquity and evolution of the MADS-box gene family controlling flower development in plants.
    Nam J; dePamphilis CW; Ma H; Nei M
    Mol Biol Evol; 2003 Sep; 20(9):1435-47. PubMed ID: 12777513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny.
    Martinez-Castilla LP; Alvarez-Buylla ER
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13407-12. PubMed ID: 14597714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network approaches for plant phylogenomic synteny analysis.
    Zhao T; Schranz ME
    Curr Opin Plant Biol; 2017 Apr; 36():129-134. PubMed ID: 28327435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity.
    de Bruijn S; Zhao T; Muiño JM; Schranz EM; Angenent GC; Kaufmann K
    BMC Plant Biol; 2018 Dec; 18(1):368. PubMed ID: 30577806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification and analysis of MIKC-type MADS-box genes expression in Chimonanthus salicifolius.
    Gui FF; Jiang GG; Bin Dong ; Zhong SW; Xiao Z; Qiu Fang ; Wang YG; Yang LY; Zhao H
    Genes Genomics; 2023 Sep; 45(9):1127-1141. PubMed ID: 37438657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family.
    Nakamura T; Song IJ; Fukuda T; Yokoyama J; Maki M; Ochiai T; Kameya T; Kanno A
    J Plant Res; 2005 Jun; 118(3):229-34. PubMed ID: 15937720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa.
    Saha G; Park JI; Jung HJ; Ahmed NU; Kayum MA; Chung MY; Hur Y; Cho YG; Watanabe M; Nou IS
    BMC Genomics; 2015 Mar; 16(1):178. PubMed ID: 25881193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis of the MADS-box gene family in cucumber.
    Hu L; Liu S
    Genome; 2012 Mar; 55(3):245-56. PubMed ID: 22376137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes.
    Zhao T; Schranz ME
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2165-2174. PubMed ID: 30674676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A prescient evolutionary model for genesis, duplication and differentiation of MIR160 homologs in Brassicaceae.
    Singh S; Singh A
    Mol Genet Genomics; 2021 Jul; 296(4):985-1003. PubMed ID: 34052911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution and functional divergence of MADS-box genes in Pyrus.
    Meng D; Cao Y; Chen T; Abdullah M; Jin Q; Fan H; Lin Y; Cai Y
    Sci Rep; 2019 Feb; 9(1):1266. PubMed ID: 30718750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide survey and expression analysis of the MADS-box gene family in soybean.
    Shu Y; Yu D; Wang D; Guo D; Guo C
    Mol Biol Rep; 2013 Jun; 40(6):3901-11. PubMed ID: 23559340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene duplication and loss in a MADS box gene transcription factor circuit.
    Lee HL; Irish VF
    Mol Biol Evol; 2011 Dec; 28(12):3367-80. PubMed ID: 21712469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.
    Bemer M; Gordon J; Weterings K; Angenent GC
    Mol Biol Evol; 2010 Feb; 27(2):481-95. PubMed ID: 19933156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification.
    Vekemans D; Proost S; Vanneste K; Coenen H; Viaene T; Ruelens P; Maere S; Van de Peer Y; Geuten K
    Mol Biol Evol; 2012 Dec; 29(12):3793-806. PubMed ID: 22821009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence and expression variation in SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1): homeolog evolution in Indian Brassicas.
    Sri T; Mayee P; Singh A
    Dev Genes Evol; 2015 Sep; 225(5):287-303. PubMed ID: 26276216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.