BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 2858481)

  • 1. Experimental tardive dyskinesia.
    Gunne LM; Häggström JE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):48-50. PubMed ID: 2858481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis.
    Gunne LM; Häggström JE; Sjöquist B
    Nature; 1984 May 24-30; 309(5966):347-9. PubMed ID: 6727989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuropeptide changes in a primate model (Cebus apella) for tardive dyskinesia.
    Johansson PE; Terenius L; Häggström JE; Gunne L
    Neuroscience; 1990; 37(2):563-7. PubMed ID: 1723515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathophysiology of tardive dyskinesia.
    Gunne LM; Häggström JE
    Psychopharmacology Suppl; 1985; 2():191-3. PubMed ID: 3858799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurobiochemical changes in tardive dyskinesia.
    Gunne LM; Häggström JE; Johansson P; Levin ED; Terenius L
    Encephale; 1988 Sep; 14 Spec No():167-73. PubMed ID: 2463901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia.
    Delfs JM; Ellison GD; Mercugliano M; Chesselet MF
    Exp Neurol; 1995 Jun; 133(2):175-88. PubMed ID: 7544289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the Cebus monkey.
    Mitchell IJ; Crossman AR; Liminga U; Andren P; Gunne LM
    Mov Disord; 1992; 7(1):32-7. PubMed ID: 1557064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathophysiology of tardive dyskinesia.
    Klawans HL; Carvey P; Tanner CM; Goetz CG
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):38-41. PubMed ID: 2858479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progesterone attenuates neuroleptic-induced orofacial dyskinesia via the activity of its metabolite, allopregnanolone, a positive GABA(A) modulating neurosteroid.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Feb; 32(2):451-61. PubMed ID: 17988775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The turnover rate of gamma-aminobutyric acid in the nuclei of telencephalon: implications in the pharmacology of antipsychotics and of a minor tranquilizer.
    Mao CC; Marco E; Revuelta A; Bertilsson L; Costa E
    Biol Psychiatry; 1977 Jun; 12(3):359-71. PubMed ID: 17436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete regional distribution of biochemical markers for the dopamine, noradrenaline, serotonin, GABA and acetylcholine systems in the monkey brain (Cebus Apella). Effects of stress.
    Häggström JE; Sjöquist B; Eckernäs SA; Ingvast A; Gunne LM
    Acta Physiol Scand Suppl; 1984; 534():1-27. PubMed ID: 6150601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic neuroleptic therapy: tolerance and GABA systems.
    Lloyd KG; Shibuya M; Davidson L; Hornykiewicz O
    Adv Biochem Psychopharmacol; 1977; 16():409-15. PubMed ID: 18890
    [No Abstract]   [Full Text] [Related]  

  • 13. Tardive dyskinesia: pathophysiology and animal models.
    Casey DE
    J Clin Psychiatry; 2000; 61 Suppl 4():5-9. PubMed ID: 10739324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Neuroleptic parkinsonism and tardive dyskinesia and methods of pharmacologically correcting these pathologic conditions (review)].
    Arushanian EB
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1985; 85(2):269-77. PubMed ID: 2858951
    [No Abstract]   [Full Text] [Related]  

  • 15. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2003; 119(2):547-55. PubMed ID: 12770567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms.
    Giorgi M; D'Angelo V; Esposito Z; Nuccetelli V; Sorge R; Martorana A; Stefani A; Bernardi G; Sancesario G
    Eur J Neurosci; 2008 Sep; 28(5):941-50. PubMed ID: 18717735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of tardive dyskinesia in Cebus apella and Macaca speciosa monkeys: a review.
    Domino EF
    Psychopharmacology Suppl; 1985; 2():217-23. PubMed ID: 2860660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunocytochemical analysis of methionine enkephalin, substance P, and glutamic acid decarboxylase within neostriatal neurons.
    Bradley RH; Kitai ST; Wu JY
    J Am Osteopath Assoc; 1984 Sep; 84(1 Suppl):98-110. PubMed ID: 6208175
    [No Abstract]   [Full Text] [Related]  

  • 19. Blockade of A2A receptors plus l-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from l-DOPA alone in the rat globus pallidus and substantia nigra reticulata.
    Carta AR; Tabrizi MA; Baraldi PG; Pinna A; Pala P; Morelli M
    Exp Neurol; 2003 Dec; 184(2):679-87. PubMed ID: 14769359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clozapine and haloperidol have differential effects on glutamic acid decarboxylase mRNA in the pallidal nuclei of the rat.
    Mercugliano M; Saller CF; Salama AI; U'Prichard DC; Chesselet MF
    Neuropsychopharmacology; 1992 May; 6(3):179-87. PubMed ID: 1599608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.