BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28584880)

  • 1. Sulfate radicals enable a non-enzymatic Krebs cycle precursor.
    Keller MA; Kampjut D; Harrison SA; Ralser M
    Nat Ecol Evol; 2017 Mar; 1(4):83. PubMed ID: 28584880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.
    Keller MA; Zylstra A; Castro C; Turchyn AV; Griffin JL; Ralser M
    Sci Adv; 2016 Jan; 2(1):e1501235. PubMed ID: 26824074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life.
    Ralser M
    Biochem J; 2018 Aug; 475(16):2577-2592. PubMed ID: 30166494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cyanosulfidic origin of the Krebs cycle.
    Ritson DJ
    Sci Adv; 2021 Aug; 7(33):. PubMed ID: 34389542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reply to 'Do sulfate radicals really enable a non-enzymatic Krebs cycle precursor?'.
    Keller MA; Kampjut D; Harrison SA; Driscoll PC; Ralser M
    Nat Ecol Evol; 2019 Feb; 3(2):139-140. PubMed ID: 30697004
    [No Abstract]   [Full Text] [Related]  

  • 6. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle.
    Salway JG
    Trends Biochem Sci; 2018 Nov; 43(11):847-849. PubMed ID: 29807701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in
    Crousilles A; Dolan SK; Brear P; Chirgadze DY; Welch M
    J Biol Chem; 2018 Sep; 293(37):14260-14269. PubMed ID: 30030382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do sulfate radicals really enable a non-enzymatic Krebs cycle precursor?
    Sutherland J; Ritson D
    Nat Ecol Evol; 2019 Feb; 3(2):138. PubMed ID: 30697001
    [No Abstract]   [Full Text] [Related]  

  • 9. Metals promote sequences of the reverse Krebs cycle.
    Muchowska KB; Varma SJ; Chevallot-Beroux E; Lethuillier-Karl L; Li G; Moran J
    Nat Ecol Evol; 2017 Nov; 1(11):1716-1721. PubMed ID: 28970480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and breakdown of universal metabolic precursors promoted by iron.
    Muchowska KB; Varma SJ; Moran J
    Nature; 2019 May; 569(7754):104-107. PubMed ID: 31043728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and Synthetic Variants of the Tricarboxylic Acid Cycle in Cyanobacteria: Introduction of the GABA Shunt into
    Zhang S; Qian X; Chang S; Dismukes GC; Bryant DA
    Front Microbiol; 2016; 7():1972. PubMed ID: 28018308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle.
    Omini J; Wojciechowska I; Skirycz A; Moriyama H; Obata T
    Sci Rep; 2021 Sep; 11(1):18770. PubMed ID: 34548590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses.
    Choi I; Son H; Baek JH
    Life (Basel); 2021 Jan; 11(1):. PubMed ID: 33477822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of TCA Cycle for Production of Chemicals.
    Vuoristo KS; Mars AE; Sanders JPM; Eggink G; Weusthuis RA
    Trends Biotechnol; 2016 Mar; 34(3):191-197. PubMed ID: 26702790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas chromatography-mass spectrometry based
    Eylem CC; Baysal İ; Erikci A; Yabanoglu-Ciftci S; Zhang S; Kır S; Terzic A; Dzeja P; Nemutlu E
    Anal Chim Acta; 2021 Apr; 1154():338325. PubMed ID: 33736808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Krebs Cycle Rewired: Driver of Atherosclerosis Progression?
    Liang Y; Chen Y; Li L; Zhang S; Xiao J; Wei D
    Curr Med Chem; 2022; 29(13):2322-2333. PubMed ID: 34365937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle.
    Niehaus TD; Hillmann KB
    FEBS J; 2020 Apr; 287(7):1343-1358. PubMed ID: 32149453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tricarboxylic acid cycle activity suppresses acetylation of mitochondrial proteins during early embryonic development in
    Hada K; Hirota K; Inanobe A; Kako K; Miyata M; Araoi S; Matsumoto M; Ohta R; Arisawa M; Daitoku H; Hanada T; Fukamizu A
    J Biol Chem; 2019 Mar; 294(9):3091-3099. PubMed ID: 30606736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.
    Keller MA; Turchyn AV; Ralser M
    Mol Syst Biol; 2014 Apr; 10(4):725. PubMed ID: 24771084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and function of the mammalian tricarboxylic acid cycle.
    Arnold PK; Finley LWS
    J Biol Chem; 2023 Feb; 299(2):102838. PubMed ID: 36581208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.