These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

982 related articles for article (PubMed ID: 2858497)

  • 41. Organisation of the catecholaminergic system in the vagal motor nuclei of pigs: a retrograde fluorogold tract tracing study combined with immunohistochemistry of catecholaminergic synthesizing enzymes.
    Chaillou E; Tillet Y; Malbert CH
    J Chem Neuroanat; 2009 Dec; 38(4):257-65. PubMed ID: 19615441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization of tyrosine hydroxylase in neuronal targets and efferents of the area postrema in the nucleus tractus solitarii of the rat.
    Kachidian P; Pickel VM
    J Comp Neurol; 1993 Mar; 329(3):337-53. PubMed ID: 8096227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution and morphology of the catecholaminergic neural elements in the human hypothalamus.
    Dudas B; Baker M; Rotoli G; Grignol G; Bohn MC; Merchenthaler I
    Neuroscience; 2010 Nov; 171(1):187-95. PubMed ID: 20801195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat.
    Hayakawa T; Takanaga A; Tanaka K; Maeda S; Seki M
    Brain Res; 2004 Apr; 1006(1):66-73. PubMed ID: 15047025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons.
    Ma PM
    J Comp Neurol; 1997 May; 381(4):411-27. PubMed ID: 9136799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organization of presumptive catecholamine-synthesizing neurons in the canine medulla oblongata.
    Dormer KJ; Anwar M; Ashlock SR; Ruggiero DA
    Brain Res; 1993 Jan; 601(1-2):41-64. PubMed ID: 8094313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fos expression after mating in noradrenergic cells of the A1 and A2 areas of the medulla is altered by adrenalectomy.
    Cameron NM; Ha GK; Erskine MS
    J Neuroendocrinol; 2004 Sep; 16(9):750-7. PubMed ID: 15344913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for the existence of L-dopa- and dopamine-immunoreactive nerve cell bodies in the caudal part of the dorsal motor nucleus of the vagus nerve.
    Manier M; Feuerstein C; Passagia JG; Mouchet P; Mons N; Geffard M; Thibault J
    J Chem Neuroanat; 1990; 3(3):193-205. PubMed ID: 1973044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus.
    Cunningham ET; Sawchenko PE
    J Comp Neurol; 1988 Aug; 274(1):60-76. PubMed ID: 2458397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution of neurotensin-immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat.
    Higgins GA; Hoffman GE; Wray S; Schwaber JS
    J Comp Neurol; 1984 Jun; 226(2):155-64. PubMed ID: 6376547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time course study of changes in the activity of the catecholamine synthesizing enzymes in the rat medulla oblongata after intraventricular injection of 6-hydroxydopamine.
    Fety R; Renaud B
    Brain Res; 1983 Aug; 272(2):277-82. PubMed ID: 6137262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons.
    Simonian SX; Herbison AE
    Neuroscience; 1997 Jan; 76(2):517-29. PubMed ID: 9015335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chronic isolation of adult rats decreases gene expression of catecholamine biosynthetic enzymes in adrenal medulla.
    Gavrilovic L; Spasojevic N; Tanic N; Dronjak S
    Neuro Endocrinol Lett; 2008 Dec; 29(6):1015-20. PubMed ID: 19112418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A1 catecholamine cell group: fine structure and synaptic input from the nucleus of the solitary tract.
    Chan RK; Peto CA; Sawchenko PE
    J Comp Neurol; 1995 Jan; 351(1):62-80. PubMed ID: 7896940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adrenaline-synthesizing neurons in the medulla of the cat.
    Ruggiero DA; Gatti PJ; Gillis RA; Norman WP; Anwar M; Reis DJ
    J Comp Neurol; 1986 Oct; 252(4):532-42. PubMed ID: 3537023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapidly adapting pulmonary receptor afferents: I. Arborization in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):560-73. PubMed ID: 2464624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential expression of catecholamine synthetic enzymes in the caudal ventral pons.
    Goodchild AK; Phillips JK; Lipski J; Pilowsky PM
    J Comp Neurol; 2001 Oct; 438(4):457-67. PubMed ID: 11559901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution of catecholamine-synthesizing enzymes in goldfish brains: presumptive dopamine and norepinephrine neuronal organization.
    Hornby PJ; Piekut DT
    Brain Behav Evol; 1990; 35(1):49-64. PubMed ID: 1971189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adrenergic neurons in sheep brain demonstrated by immunohistochemistry with antibodies to phenylethanolamine N-methyltransferase (PNMT) and dopamine-beta-hydroxylase (DBH): absence of the C1 cell group in the sheep brain.
    Tillet Y
    Neurosci Lett; 1988 Dec; 95(1-3):107-12. PubMed ID: 3226600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat.
    Cunningham ET; Bohn MC; Sawchenko PE
    J Comp Neurol; 1990 Feb; 292(4):651-67. PubMed ID: 2324319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.