These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 28585179)
1. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179 [TBL] [Abstract][Full Text] [Related]
2. Engineering of high-precision base editors for site-specific single nucleotide replacement. Tan J; Zhang F; Karcher D; Bock R Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865 [TBL] [Abstract][Full Text] [Related]
3. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759 [TBL] [Abstract][Full Text] [Related]
4. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Mianné J; Codner GF; Caulder A; Fell R; Hutchison M; King R; Stewart ME; Wells S; Teboul L Methods; 2017 May; 121-122():68-76. PubMed ID: 28363792 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Raveux A; Vandormael-Pournin S; Cohen-Tannoudji M Sci Rep; 2017 Feb; 7():42661. PubMed ID: 28209967 [TBL] [Abstract][Full Text] [Related]
6. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Wefers B; Bashir S; Rossius J; Wurst W; Kühn R Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886 [TBL] [Abstract][Full Text] [Related]
7. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Wu H; Liu Q; Shi H; Xie J; Zhang Q; Ouyang Z; Li N; Yang Y; Liu Z; Zhao Y; Lai C; Ruan D; Peng J; Ge W; Chen F; Fan N; Jin Q; Liang Y; Lan T; Yang X; Wang X; Lei Z; Doevendans PA; Sluijter JPG; Wang K; Li X; Lai L Cell Mol Life Sci; 2018 Oct; 75(19):3593-3607. PubMed ID: 29637228 [TBL] [Abstract][Full Text] [Related]
8. Current Status and Challenges of DNA Base Editing Tools. Jeong YK; Song B; Bae S Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143 [TBL] [Abstract][Full Text] [Related]
9. Electroporation of AsCpf1/RNP at the Zygote Stage is an Efficient Genome Editing Method to Generate Knock-Out Mice Deficient in Leukemia Inhibitory Factor. Kim YS; Kim GR; Park M; Yang SC; Park SH; Won JE; Lee JH; Shin HE; Song H; Kim HR Tissue Eng Regen Med; 2020 Feb; 17(1):45-53. PubMed ID: 32002841 [TBL] [Abstract][Full Text] [Related]
10. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW Mol Vis; 2019; 25():174-182. PubMed ID: 30996586 [TBL] [Abstract][Full Text] [Related]
11. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Liu Z; Chen M; Shan H; Chen S; Xu Y; Song Y; Zhang Q; Yuan H; Ouyang H; Li Z; Lai L Cell Mol Life Sci; 2019 Oct; 76(20):4155-4164. PubMed ID: 31030226 [TBL] [Abstract][Full Text] [Related]
12. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Heo YB; Hwang GH; Kang SW; Bae S; Woo HM Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037 [TBL] [Abstract][Full Text] [Related]
13. Engineering the Delivery System for CRISPR-Based Genome Editing. Glass Z; Lee M; Li Y; Xu Q Trends Biotechnol; 2018 Feb; 36(2):173-185. PubMed ID: 29305085 [TBL] [Abstract][Full Text] [Related]
14. Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes. Pritchard CEJ; Kroese LJ; Huijbers IJ Methods Mol Biol; 2017; 1642():21-35. PubMed ID: 28815491 [TBL] [Abstract][Full Text] [Related]
15. CRISPR-Cas9 system-driven site-specific selection pressure on Herpes simplex virus genomes. Li Z; Bi Y; Xiao H; Sun L; Ren Y; Li Y; Chen C; Cun W Virus Res; 2018 Jan; 244():286-295. PubMed ID: 28279800 [TBL] [Abstract][Full Text] [Related]
16. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365 [TBL] [Abstract][Full Text] [Related]
17. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Yen ST; Zhang M; Deng JM; Usman SJ; Smith CN; Parker-Thornburg J; Swinton PG; Martin JF; Behringer RR Dev Biol; 2014 Sep; 393(1):3-9. PubMed ID: 24984260 [TBL] [Abstract][Full Text] [Related]
18. Precision genome editing in the CRISPR era. Salsman J; Dellaire G Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771 [TBL] [Abstract][Full Text] [Related]
19. [CRISPR/CAS9, the King of Genome Editing Tools]. Bannikov AV; Lavrov AV Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076 [TBL] [Abstract][Full Text] [Related]
20. Correction of β-thalassemia mutant by base editor in human embryos. Liang P; Ding C; Sun H; Xie X; Xu Y; Zhang X; Sun Y; Xiong Y; Ma W; Liu Y; Wang Y; Fang J; Liu D; Songyang Z; Zhou C; Huang J Protein Cell; 2017 Nov; 8(11):811-822. PubMed ID: 28942539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]