These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28585522)
1. Structural and photoluminescence properties of silicon nanowires extracted by means of a centrifugation process from plasma torch synthesized silicon nanopowder. Le Borgne V; Agati M; Boninelli S; Castrucci P; De Crescenzi M; Dolbec R; El Khakani MA Nanotechnology; 2017 Jul; 28(28):285702. PubMed ID: 28585522 [TBL] [Abstract][Full Text] [Related]
2. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties. Agati M; Amiard G; Le Borgne V; Castrucci P; Dolbec R; De Crescenzi M; El Khakani MA; Boninelli S Sci Rep; 2016 Nov; 5():37598. PubMed ID: 27874057 [TBL] [Abstract][Full Text] [Related]
3. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry. Gonchar KA; Zubairova AA; Schleusener A; Osminkina LA; Sivakov V Nanoscale Res Lett; 2016 Dec; 11(1):357. PubMed ID: 27506530 [TBL] [Abstract][Full Text] [Related]
4. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
5. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy. Agati M; Amiard G; Borgne VL; Castrucci P; Dolbec R; De Crescenzi M; El Khakani MA; Boninelli S Beilstein J Nanotechnol; 2017; 8():440-445. PubMed ID: 28326234 [TBL] [Abstract][Full Text] [Related]
6. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires. Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast Carrier Relaxation Dynamics in Quantum Confined Non-Isotropic Silicon Nanostructures Synthesized by an Inductively Coupled Plasma Process. Ponzoni S; Freddi S; Agati M; Le Borgne V; Boninelli S; Dolbec R; El Khakani MA; Pagliara S; Castrucci P Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992700 [TBL] [Abstract][Full Text] [Related]
8. Photoassisted tuning of silicon nanocrystal photoluminescence. Choi J; Wang NS; Reipa V Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527 [TBL] [Abstract][Full Text] [Related]
9. Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence. Ratchford D; Yeom J; Long JP; Pehrsson PE Nanoscale; 2015 Mar; 7(9):4124-33. PubMed ID: 25666765 [TBL] [Abstract][Full Text] [Related]
10. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots. Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635 [TBL] [Abstract][Full Text] [Related]
11. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals. Ghosh R; Giri PK; Imakita K; Fujii M Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591 [TBL] [Abstract][Full Text] [Related]
12. Platinum assisted vapor-liquid-solid growth of er-si nanowires and their optical properties. Kim MH; Kim IS; Park YH; Park TE; Shin JH; Choi HJ Nanoscale Res Lett; 2009 Nov; 5(2):286-90. PubMed ID: 20672113 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates. Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667 [TBL] [Abstract][Full Text] [Related]
14. Control of surface migration of gold particles on Si nanowires. Kawashima T; Mizutani T; Nakagawa T; Torii H; Saitoh T; Komori K; Fujii M Nano Lett; 2008 Jan; 8(1):362-8. PubMed ID: 18095731 [TBL] [Abstract][Full Text] [Related]
15. Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments. Leontis I; Othonos A; Nassiopoulou AG Nanoscale Res Lett; 2013 Sep; 8(1):383. PubMed ID: 24025542 [TBL] [Abstract][Full Text] [Related]
16. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Park WI; Zheng G; Jiang X; Tian B; Lieber CM Nano Lett; 2008 Sep; 8(9):3004-9. PubMed ID: 18710294 [TBL] [Abstract][Full Text] [Related]
17. Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. Gaidi M; Daoudi K; Columbus S; Hajjaji A; Khakani MAE; Bessais B J Environ Sci (China); 2021 Mar; 101():123-134. PubMed ID: 33334508 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of silicon nanowires on mesophase carbon microbead substrates by chemical vapor deposition. Li WN; Ding YS; Yuan J; Gomez S; Suib SL; Galasso FS; Dicarlo JF J Phys Chem B; 2005 Mar; 109(8):3291-7. PubMed ID: 16851355 [TBL] [Abstract][Full Text] [Related]
19. Photoelectrocatalytic activity of silicon nanowires decorated with electroless copper nanoparticles and graphene oxide using a plasma jet for removal of methyl orange under visible light. Hernández Rodríguez C; Pérez Bueno JJ; Maldonado Pérez AX; Ruiz Flores M; Oza G RSC Adv; 2023 Apr; 13(16):10621-10635. PubMed ID: 37021106 [TBL] [Abstract][Full Text] [Related]
20. Large-area silicon nanowires from silicon monoxide for solar cell applications. Zhang ML; Mahmood I; Fan X; Xu G; Wong NB J Nanosci Nanotechnol; 2010 Dec; 10(12):8271-7. PubMed ID: 21121327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]