These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28585827)

  • 21. The effect of chemical structure on the stability of physical vapor deposited glasses of 1,3,5-triarylbenzene.
    Liu T; Cheng K; Salami-Ranjbaran E; Gao F; Li C; Tong X; Lin YC; Zhang Y; Zhang W; Klinge L; Walsh PJ; Fakhraai Z
    J Chem Phys; 2015 Aug; 143(8):084506. PubMed ID: 26328855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-Mediated Formation of Stable Glasses.
    Luo P; Fakhraai Z
    Annu Rev Phys Chem; 2023 Apr; 74():361-389. PubMed ID: 36750412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Decoupling of Molecular-Relaxation Processes from the Vibrational Density of States at Terahertz Frequencies in Supercooled Hydrogen-Bonded Liquids.
    Sibik J; Elliott SR; Zeitler JA
    J Phys Chem Lett; 2014 Jun; 5(11):1968-72. PubMed ID: 26273882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers.
    Ngai KL; Capaccioli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031501. PubMed ID: 15089297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface self-diffusion of organic glasses.
    Brian CW; Yu L
    J Phys Chem A; 2013 Dec; 117(50):13303-9. PubMed ID: 23829661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooling-rate dependence of kinetic and mechanical stabilities of simulated glasses.
    Staley H; Flenner E; Szamel G
    J Chem Phys; 2015 Jun; 142(24):244508. PubMed ID: 26133442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses.
    Mehta M; Ragoonanan V; McKenna GB; Suryanarayanan R
    Mol Pharm; 2016 Apr; 13(4):1267-77. PubMed ID: 26895136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition.
    Kearns KL; Swallen SF; Ediger MD; Wu T; Sun Y; Yu L
    J Phys Chem B; 2008 Apr; 112(16):4934-42. PubMed ID: 18386872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastable monodisperse polymer glass formed by physical vapour deposition.
    Raegen AN; Yin J; Zhou Q; Forrest JA
    Nat Mater; 2020 Oct; 19(10):1110-1113. PubMed ID: 32632279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling of Caged Molecule Dynamics to JG β-Relaxation III: van der Waals Glasses.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12519-25. PubMed ID: 26340473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Picosecond dynamic heterogeneity, hopping, and Johari-Goldstein relaxation in glass-forming liquids.
    Cicerone MT; Zhong Q; Tyagi M
    Phys Rev Lett; 2014 Sep; 113(11):117801. PubMed ID: 25260005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl.
    Whitaker KR; Tylinski M; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2015 Aug; 143(8):084511. PubMed ID: 26328860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of substrate temperature on the transformation front velocities that determine thermal stability of vapor-deposited glasses.
    Dalal SS; Ediger MD
    J Phys Chem B; 2015 Mar; 119(9):3875-82. PubMed ID: 25664997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.
    Crisanti A; Leuzzi L; Paoluzzi M
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):98. PubMed ID: 21947889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary relaxation behavior in a strong glass.
    Hu L; Yue Y
    J Phys Chem B; 2008 Jul; 112(30):9053-7. PubMed ID: 18605753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications.
    Goldstein M
    J Chem Phys; 2010 Jan; 132(4):041104. PubMed ID: 20113012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure.
    Rodríguez-Tinoco C; González-Silveira M; Barrio M; Lloveras P; Tamarit JL; Garden JL; Rodríguez-Viejo J
    Sci Rep; 2016 Oct; 6():34296. PubMed ID: 27694814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glass transition and stable glass formation of tetrachloromethane.
    Chua YZ; Tylinski M; Tatsumi S; Ediger MD; Schick C
    J Chem Phys; 2016 Jun; 144(24):244503. PubMed ID: 27369523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.