These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28585938)

  • 1. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome.
    Borrel G; McCann A; Deane J; Neto MC; Lynch DB; Brugère JF; O'Toole PW
    ISME J; 2017 Sep; 11(9):2059-2074. PubMed ID: 28585938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the trimethylamine-producing bacteria of the human gut microbiota.
    Rath S; Heidrich B; Pieper DH; Vital M
    Microbiome; 2017 May; 5(1):54. PubMed ID: 28506279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Insights into Adaptations of Trimethylamine-Utilizing Methanogens to Diverse Habitats, Including the Human Gut.
    de la Cuesta-Zuluaga J; Spector TD; Youngblut ND; Ley RE
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33563787
    [No Abstract]   [Full Text] [Related]  

  • 4. Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics.
    Fadhlaoui K; Arnal ME; Martineau M; Camponova P; Ollivier B; O'Toole PW; Brugère JF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4705-4716. PubMed ID: 32281023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine.
    Falony G; Vieira-Silva S; Raes J
    Annu Rev Microbiol; 2015; 69():305-21. PubMed ID: 26274026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences.
    Söllinger A; Schwab C; Weinmaier T; Loy A; Tveit AT; Schleper C; Urich T
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes.
    Kim CY; Lee M; Yang S; Kim K; Yong D; Kim HR; Lee I
    Genome Med; 2021 Aug; 13(1):134. PubMed ID: 34446072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
    Dombrowski N; Seitz KW; Teske AP; Baker BJ
    Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene.
    Mihajlovski A; Alric M; Brugère JF
    Res Microbiol; 2008; 159(7-8):516-21. PubMed ID: 18644435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Distal Gut Bacterial Community of Some Primates and Carnivora.
    Chen X; Li QY; Li GD; Xu FJ; Han L; Jiang Y; Huang XS; Jiang CL
    Curr Microbiol; 2018 Feb; 75(2):213-222. PubMed ID: 29127454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and temporal stability of the gut microbiota in older persons.
    Jeffery IB; Lynch DB; O'Toole PW
    ISME J; 2016 Jan; 10(1):170-82. PubMed ID: 26090993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the Gastrointestinal Tract, Lung, and Nose and on Skin.
    Koskinen K; Pausan MR; Perras AK; Beck M; Bang C; Mora M; Schilhabel A; Schmitz R; Moissl-Eichinger C
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Correlation between Dietary Fiber-Suppressed Microbial Conversion of Choline to Trimethylamine and Formation of Methylglyoxal.
    Li Q; Chen H; Zhang M; Wu T; Liu R; Zhang Z
    J Agric Food Chem; 2019 Dec; 67(48):13247-13257. PubMed ID: 31707781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions.
    Chaudhary PP; Gaci N; Borrel G; O'Toole PW; Brugère JF
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5801-15. PubMed ID: 26088176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the grass carp gut microbiome and its effect on metabolism.
    Ni J; Yan Q; Yu Y; Zhang T
    FEMS Microbiol Ecol; 2014 Mar; 87(3):704-14. PubMed ID: 24256454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.
    Brugère JF; Borrel G; Gaci N; Tottey W; O'Toole PW; Malpuech-Brugère C
    Gut Microbes; 2014; 5(1):5-10. PubMed ID: 24247281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways.
    Li Q; Wu T; Liu R; Zhang M; Wang R
    Mol Nutr Food Res; 2017 Dec; 61(12):. PubMed ID: 28884952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gutting TMA to Save the Heart.
    Crothers J; Bry L
    Cell Host Microbe; 2018 Oct; 24(4):470-471. PubMed ID: 30308152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.