These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28585942)

  • 1. Progress of crystallization in microfluidic devices.
    Shi HH; Xiao Y; Ferguson S; Huang X; Wang N; Hao HX
    Lab Chip; 2017 Jun; 17(13):2167-2185. PubMed ID: 28585942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients.
    Su Z; He J; Zhou P; Huang L; Zhou J
    Lab Chip; 2020 Jun; 20(11):1907-1916. PubMed ID: 32420560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL; Classen S; Berger JM; Quake SR
    J Am Chem Soc; 2006 Mar; 128(10):3142-3. PubMed ID: 16522084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Approaches for Protein Crystal Structure Analysis.
    Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M
    Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening.
    Li G; Chen Q; Li J; Hu X; Zhao J
    Anal Chem; 2010 Jun; 82(11):4362-9. PubMed ID: 20459060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation.
    Coliaie P; Kelkar MS; Langston M; Liu C; Nazemifard N; Patience D; Skliar D; Nere NK; Singh MR
    Lab Chip; 2021 Jun; 21(12):2333-2342. PubMed ID: 34096561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Real-time monitoring of drug crystallization with and without additives].
    Pataki H; Palásti K; Vajna B; Csontos I; Marosi G
    Acta Pharm Hung; 2011; 81(3):109-24. PubMed ID: 22165414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.
    Samad NA; Sin G; Gernaey KV; Gani R
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):911-29. PubMed ID: 23770430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration control for protein crystallization via a continuously-fed crystallization chamber.
    Sugiyama M; Sengupta S; Todd P; Barocas VH
    Lab Chip; 2008 Aug; 8(8):1398-401. PubMed ID: 18651085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput multi-microfluidic crystal generator (MMicroCryGen) platform for facile screening of polymorphism and crystal morphology for pharmaceutical compounds.
    Simone E; McVeigh J; Reis NM; Nagy ZK
    Lab Chip; 2018 Jul; 18(15):2235-2245. PubMed ID: 29946616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling protein crystal nucleation by droplet-based microfluidics.
    Maeki M; Teshima Y; Yoshizuka S; Yamaguchi H; Yamashita K; Miyazaki M
    Chemistry; 2014 Jan; 20(4):1049-56. PubMed ID: 24382819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystals: The Preparation, Precise Control and Application Toward the Pharmaceutics and Food Industry.
    Wu C; Chen Z; Hu Y; Rao Z; Wu W; Yang Z
    Curr Pharm Des; 2018; 24(21):2425-2431. PubMed ID: 29766786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial 2D nucleation of the stable polymorphic form of the steroid 7alphaMNa on the metastable form: implications for Ostwald's rule of stages.
    Stoica C; Verwer P; Meekes H; Vlieg E; van Hoof PJ; Kaspersen FM
    Int J Pharm; 2006 Feb; 309(1-2):16-24. PubMed ID: 16384675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets.
    Gong T; Shen J; Hu Z; Marquez M; Cheng Z
    Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility curves and nucleation rates from molecular dynamics for polymorph prediction - moving beyond lattice energy minimization.
    Parks C; Koswara A; DeVilbiss F; Tung HH; Nere NK; Bordawekar S; Nagy ZK; Ramkrishna D
    Phys Chem Chem Phys; 2017 Feb; 19(7):5285-5295. PubMed ID: 28149994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic crystallization.
    Leng J; Salmon JB
    Lab Chip; 2009 Jan; 9(1):24-34. PubMed ID: 19209330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of process analytical technology to crystallization processes.
    Yu LX; Lionberger RA; Raw AS; D'Costa R; Wu H; Hussain AS
    Adv Drug Deliv Rev; 2004 Feb; 56(3):349-69. PubMed ID: 14962586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.