These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28585945)

  • 1. Enhanced photochromic modulation efficiency: a novel plasmonic molybdenum oxide hybrid.
    Li N; Li Y; Sun G; Zhou Y; Ji S; Yao H; Cao X; Bao S; Jin P
    Nanoscale; 2017 Jun; 9(24):8298-8304. PubMed ID: 28585945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.
    Zhu C; Xu Q; Ji L; Ren Y; Fang M
    Chem Asian J; 2017 Dec; 12(23):2980-2984. PubMed ID: 28885770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Liu W; Xu Q; Cui W; Zhu C; Qi Y
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1600-1604. PubMed ID: 28044400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis.
    Wang J; Yang Y; Li H; Gao J; He P; Bian L; Dong F; He Y
    Chem Sci; 2019 Jul; 10(25):6330-6335. PubMed ID: 31341587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media.
    Lee SH; Nishi H; Tatsuma T
    Chem Commun (Camb); 2017 Nov; 53(94):12680-12683. PubMed ID: 29134208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective and Tunable Near-Infrared and Visible Light Transmittance of MoO
    Li N; Li Y; Sun G; Ma Y; Chang T; Ji S; Yao H; Cao X; Bao S; Jin P
    Chem Asian J; 2017 Jul; 12(14):1709-1714. PubMed ID: 28636086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A plasmonic non-stoichiometric WO
    Li N; Cao X; Li Y; Chang T; Long S; Zhou Y; Sun G; Ge L; Jin P
    Chem Commun (Camb); 2018 May; 54(41):5241-5244. PubMed ID: 29726884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.
    Shi J; Kuwahara Y; Wen M; Navlani-García M; Mori K; An T; Yamashita H
    Chem Asian J; 2016 Sep; 11(17):2377-81. PubMed ID: 27555123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-enhanced photocatalysis using gold nanoparticles encapsulated in nanoscale molybdenum oxide shell.
    Tao Z; Feng J; Yang F; Zhang L; Shen H; Cheng Q; Liu L
    Nanotechnology; 2023 Feb; 34(15):. PubMed ID: 36652695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Two-dimensional Amorphous Plasmonic Heterostructure of Pd/MoO
    Liu W; Tian Q; Yang J; Zhou Y; Chang H; Cui W; Xu Q
    Chem Asian J; 2021 May; 16(10):1253-1257. PubMed ID: 33780145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots.
    Li H; Xu Q; Wang X; Liu W
    Small; 2018 Jul; 14(28):e1801523. PubMed ID: 29882238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light.
    Cheng H; Kamegawa T; Mori K; Yamashita H
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2910-4. PubMed ID: 24520029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells.
    Song G; Shen J; Jiang F; Hu R; Li W; An L; Zou R; Chen Z; Qin Z; Hu J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3915-22. PubMed ID: 24564332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-stoichiometric MoO
    Ding D; Huang W; Song C; Yan M; Guo C; Liu S
    Chem Commun (Camb); 2017 Jun; 53(50):6744-6747. PubMed ID: 28589975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles.
    Jung K; Song HJ; Lee G; Ko Y; Ahn K; Choi H; Kim JY; Ha K; Song J; Lee JK; Lee C; Choi M
    ACS Nano; 2014 Mar; 8(3):2590-601. PubMed ID: 24533831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic behaviour and plasmon-induced charge separation of nanostructured MoO
    Lee SH; Nishi H; Tatsuma T
    Nanoscale; 2018 Feb; 10(6):2841-2847. PubMed ID: 29362747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.
    Kuwahara Y; Yoshimura Y; Haematsu K; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(29):9203-9210. PubMed ID: 29909632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.