BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28585964)

  • 1. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study.
    Rajabpour A; Seif R; Arabha S; Heyhat MM; Merabia S; Hassanali A
    J Chem Phys; 2019 Mar; 150(11):114701. PubMed ID: 30901998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.
    Han H; Schlawitschek C; Katyal N; Stephan P; Gambaryan-Roisman T; Leroy F; Müller-Plathe F
    Langmuir; 2017 May; 33(21):5336-5343. PubMed ID: 28492334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM).
    Nair AR; Sathian SP
    J Chem Phys; 2012 Aug; 137(8):084702. PubMed ID: 22938254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent effects of the thermal transport at gold nanoparticle-water interfaces.
    Gutiérrez-Varela O; Merabia S; Santamaria R
    J Chem Phys; 2022 Aug; 157(8):084702. PubMed ID: 36050018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Heat Flow between Charged Nanoparticles and an Aqueous Electrolyte.
    Rabani R; Saidi MH; Rajabpour A; Joly L; Merabia S
    Langmuir; 2023 Oct; 39(43):15222-15230. PubMed ID: 37865920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating thermal resistance at the solid-fluid interface through monolayer deposition.
    Hasan MR; Vo TQ; Kim B
    RSC Adv; 2019 Feb; 9(9):4948-4956. PubMed ID: 35514672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of thermal resistance at the liquid-solid interface.
    Kim BH; Beskok A; Cagin T
    J Chem Phys; 2008 Nov; 129(17):174701. PubMed ID: 19045364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductance of the water-gold interface: The impact of the treatment of surface polarization in non-equilibrium molecular simulations.
    Olarte-Plata JD; Bresme F
    J Chem Phys; 2022 May; 156(20):204701. PubMed ID: 35649827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermostat-induced spurious interfacial resistance in non-equilibrium molecular dynamics simulations of solid-liquid and solid-solid systems.
    Ghatage D; Tomar G; Shukla RK
    J Chem Phys; 2020 Oct; 153(16):164110. PubMed ID: 33138391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport across nanoparticle-fluid interfaces: the interplay of interfacial curvature and nanoparticle-fluid interactions.
    Tascini AS; Armstrong J; Chiavazzo E; Fasano M; Asinari P; Bresme F
    Phys Chem Chem Phys; 2017 Jan; 19(4):3244-3253. PubMed ID: 28083587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
    Wilson BA; Nielsen SO; Randrianalisoa JH; Qin Z
    J Chem Phys; 2022 Aug; 157(5):054703. PubMed ID: 35933210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.
    Han H; Mérabia S; Müller-Plathe F
    J Phys Chem Lett; 2017 May; 8(9):1946-1951. PubMed ID: 28403613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination.
    Zeng N; Murphy AB
    Nanotechnology; 2009 Sep; 20(37):375702. PubMed ID: 19706944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
    Patel HA; Garde S; Keblinski P
    Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale thermal manipulation with adsorbed atoms on a solid surface at a liquid-solid interface.
    Fujiwara K; Shibahara M
    Sci Rep; 2019 Sep; 9(1):13202. PubMed ID: 31519938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.